• Title/Summary/Keyword: Back-tracking

Search Result 268, Processing Time 0.028 seconds

Mppt control of PMSG wInd power system using adaptive sliding mode control (적응 슬라이딩 모드제어를 통한 PMSG 풍력발전시스템의 MPPT제어)

  • Jeong, Hyeong-Cheol;Chun, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1060-1061
    • /
    • 2015
  • This paper presents the control method of MPPT (Maximum Power Point Tracking) using back-to- back converter. The windturbine system use PMSG(ermanent Magnet Synchronous Generator) system considering low maintenance costs and driving performance at low wind. This paper use the adaptive sliding mode control to the torque control. Proposed method was analyzed mathematically.

  • PDF

Robust Control of Industrial Robot Based on Back Propagation Algorithm (Back Propagation 알고리즘을 이용한 산업용 로봇의 견실 제어)

  • 윤주식;이희섭;윤대식;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.253-257
    • /
    • 2004
  • Neural networks are works are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division(corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

A Study of Connection Maintenance Techniques using TCP Hijacking

  • Kim, JeomGoo
    • Convergence Security Journal
    • /
    • v.14 no.2
    • /
    • pp.57-63
    • /
    • 2014
  • Internet users drastically increases, also through the Internet to buy various intrusion significantly increased. These various methods of intrusion defense thinking hacker attempting to hack the actual position of the real-time tracking of the intruder backtracking technique for research have been actively carried out. In this paper, a technique used in TCP Connection trace-back System in one packet trace-back technique watermarking technique using TCP Hijacking Connection Reply packets how to solve the difficulties of maintaining presented.

Robust Control of AM1 Robot Using PSD Sensor and Back Propagation Algorithm (PSD 센서 및 Back Propagation 알고리즘을 이용한 AM1 로봇의 견질 제어)

  • Jung, Dong-Yean;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.167-172
    • /
    • 2004
  • Neural networks are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division (Corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Integrity Assessment and Verification Procedure of Angle-only Data for Low Earth Orbit Space Objects with Optical Wide-field PatroL-Network (OWL-Net)

  • Choi, Jin;Jo, Jung Hyun;Kim, Sooyoung;Yim, Hong-Suh;Choi, Eun-Jung;Roh, Dong-Goo;Kim, Myung-Jin;Park, Jang-Hyun;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • The Optical Wide-field patroL-Network (OWL-Net) is a global optical network for Space Situational Awareness in Korea. The primary operational goal of the OWL-Net is to track Low Earth Orbit (LEO) satellites operated by Korea and to monitor the Geostationary Earth Orbit (GEO) region near the Korean peninsula. To obtain dense measurements on LEO tracking, the chopper system was adopted in the OWL-Net's back-end system. Dozens of angle-only measurements can be obtained for a single shot with the observation mode for LEO tracking. In previous work, the reduction process of the LEO tracking data was presented, along with the mechanical specification of the back-end system of the OWL-Net. In this research, we describe an integrity assessment method of time-position matching and verification of results from real observations of LEO satellites. The change rate of the angle of each streak in the shot was checked to assess the results of the matching process. The time error due to the chopper rotation motion was corrected after re-matching of time and position. The corrected measurements were compared with the simulated observation data, which were taken from the Consolidated Prediction File from the International Laser Ranging Service. The comparison results are presented in the In-track and Cross-track frame.

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM 전동기의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.855-864
    • /
    • 2011
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of IPMSM(Interior Permanent Magnet Synchronous Motor). First, in order to improve the performance of speed tracking a nonlinear back-stepping controller is designed. Since it is difficult to control the high performance driving without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. In addition, for the efficiency of power consumption of the motor, controller is designed to operate motor with minimum current for maximum torque. The proposed controller is applied through simulation to the a 2-hp IPMSM for the angular velocity reference tracking performance and load torque volatility estimation, and to test the MTPA(Maximum Torque per Ampere) operation in constant torque operation region. The result verifies the efficacy of the proposed controller.

Real-Time Hardware Simulator for Grid-Tied PMSG Wind Power System

  • Choy, Young-Do;Han, Byung-Moon;Lee, Jun-Young;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.375-383
    • /
    • 2011
  • This paper describes a real-time hardware simulator for a grid-tied Permanent Magnet Synchronous Generator (PMSG) wind power system, which consists of an anemometer, a data logger, a motor-generator set with vector drive, and a back-to-back power converter with a digital signal processor (DSP) controller. The anemometer measures real wind speed, and the data is sent to the data logger to calculate the turbine torque. The calculated torque is sent to the vector drive for the induction motor after it is scaled down to the rated simulator power. The motor generates the mechanical power for the PMSG, and the generated electrical power is connected to the grid through a back-to-back converter. The generator-side converter in a back-to-back converter operates in current control mode to track the maximum power point at the given wind speed. The grid-side converter operates to control the direct current link voltage and to correct the power factor. The developed simulator can be used to analyze various mechanical and electrical characteristics of a grid-tied PMSG wind power system. It can also be utilized to educate students or engineers on the operation of grid-tied PMSG wind power system.

A Successive Repeat-back Jamming Cancellation Scheme Using a Combined-PRN Signal to Mitigate Repeat-back Jamming for GNSS Receivers (GNSS 수신기의 C-PRN 신호 기반 재방송재밍 완화기법)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1073-1078
    • /
    • 2014
  • In this paper, an effective repeat-back jamming (RBJ) mitigation scheme known assuccessive repeat-back jamming cancellation (SRC) is proposed for the utilization of the successive interference cancellation (SIC) algorithm which is used to mitigate the near-far effect and the multiple-access interference for code division multiple-access communication systems. The proposed scheme uses a combined pseudo-random noise (C-PRN) signal from the estimated major parameters of RBJ signals. To evaluate the performance of the proposed scheme, the root mean squared (RMS) code tracking errors are shown according to the standard deviation of the parameter estimation errors of an RBJ signal, and using the well-known major parameters estimation schemes with a C-PRN signal through Monte-Carlo simulation.

Reduced-order Disturbance Observer based Coordinated Tracking of Uncertain Heterogeneous Multi-Agent Systems (축소 차수 외란 관측기를 이용한 이종 다개체 시스템의 협조 추종 제어)

  • Kim, Jung-Su;Back, Juhoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1231-1237
    • /
    • 2014
  • This paper proposes a reduced-order disturbance observer based coordinated tracking controller for uncertain heterogeneous multi-agent systems. To this end, first the control problem is converted as a robust control problem. Then, a dynamic coordinated controller is designed based on the recently proposed reduced-order disturbance observer. Simulation results are given to show the effectiveness of the proposed control scheme.

Development of Genetic Algorithm for Robust Control of Mobile Robot (모바일 로봇의 견실제어를 위한 제네틱 알고리즘 개발)

  • 김홍래;배길호;정경규;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.241-246
    • /
    • 2004
  • This paper proposed trajectory tracking control of mobile robot. Trajectory tracking control scheme are real coding genetic-algorithm and back-propergation algorithm. Control scheme ability experience proposed simulation. Stable tracking control problem of mobile robots have been studied in recent years. These studios have guaranteed stability of controller, but the performance of transient state has not been guaranteed. In some situations, constant gain controller shows overshoots and oscillations. So we introduce better control scheme using Real coding Genetic Algorithm(RCGA) and neural network. Using RCGA, we can find proper gains in several situations and these gains are generalized by neural network. The generalization power of neural network will give proper gain in untrained situation. Performance of proposed controller will verify numerical simulations and the results show better performance than constant gain controller.

  • PDF