• 제목/요약/키워드: Back-propagation network

검색결과 1,107건 처리시간 0.031초

신경망과 유전 알고리즘을 이용한 광소자용 ZnO 박막 특성 공정 모델링 및 최적화 (Process Modeling and Optimization for Characteristics of ZnO Thin Films using Neural Networks and Genetic Algorithms)

  • 고영돈;강홍성;정민창;이상렬;명재민;윤일구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.33-36
    • /
    • 2004
  • The process modeling for the growth rate in pulsed laser deposition(PLD)-grown ZnO thin films is investigated using neural networks(NNets) and the process recipes is optimized via genetic algorithms(GAs). D-optimal design is carried out and the growth rate is characterized by NNets based on the back-propagation(BP) algorithm. GAs is then used to search the desired recipes for the desired growth rate. The statistical analysis is used to verify the fitness of the nonlinear process model. This process modeling and optimization algorithms can explain the characteristics of the desired responses varying with process conditions.

  • PDF

가중 원형 정합을 이용한 인쇄체 숫자 인식 (Machine-printed Numeral Recognition using Weighted Template Matching)

  • 정민철
    • 한국산학기술학회논문지
    • /
    • 제10권3호
    • /
    • pp.554-559
    • /
    • 2009
  • 본 논문에서는 인쇄체 숫자를 인식하기 위해 가중 원형 정합(weighted template matching) 방법을 제안한다. 원형 정합은 입력 영상 전체를 하나의 전역적인 특징으로 처리하는 데 반해, 제안된 가중 원형 정합은 패턴의 특징이 나타나는 국부적인 영역에 해밍 거리(Hamming distance)의 가중치를 두어 패턴 특징을 강조하여 숫자 패턴의 인식률을 높인다. 실험에서는 기존의 원형 정합을 사용했을 때, 오류 역전파 신경망을 사용했을 때와 가중 원형 정합을 사용했을 때의 혼돈 행렬(confusion matrix)을 각각 서로 비교한다. 실험 결과는 본 논문에서 제안한 방법에 의해 인쇄체 숫자의 인식률이 크게 향상된 것을 보인다.

언센티드 칼만필터 훈련 알고리즘에 의한 순환신경망의 파라미터 추정 및 비선형 채널 등화에의 응용 (Parameter Estimation of Recurrent Neural Networks Using A Unscented Kalman Filter Training Algorithm and Its Applications to Nonlinear Channel Equalization)

  • 권오신
    • 한국지능시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.552-559
    • /
    • 2005
  • 실시간 순환형 훈련 알고리즘(RTRL)과 같이 경사법에 의해 훈련되는 순환형 뉴럴 네트웍(RNN)은 수렴속도가 매우 느린 단점을 지니고 있다. 이 알고리즘은 또한 오차 역전달 처리과정에서 결코 쉽지 않은 미분 계산을 필요로 한다. 본 논문에서는 완전하게 결합된 RNN의 훈련을 위하여 소위 언센티드 칼만필터라고 불리우는 미분없는 칼만필터 훈련 알고리즘을 시스템의 상태공간 상에서 표현하였다. 미분없는 칼만필터 훈련 알고리즘은 순환형 뉴럴 네트웍 훈련시 미분 계산 없이 매우 빠른 수렴속도와 좋은 추정 성능을 보여준다. 비선형 채널 등화 실험을 통하여 미분 없는 칼만필터 훈련 알고리즘을 이용한 RNN의 성능이 향상되었음을 보였다.

자동차 번호판 인식 성능 향상에 관한 연구 (A Study on improving the performance of License Plate Recognition)

  • 엄기열
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.203-207
    • /
    • 2006
  • Nowadays, Cars are continuing to grow at an alarming rate but they also cause many problems such as traffic accident, pollutions and so on. One of the most effective methods that prevent traffic accidents is the use of traffic monitoring systems, which are already widely used in many countries. The monitoring system is beginning to be used in domestic recently. An intelligent monitoring system generates photo images of cars as well as identifies cars by recognizing their plates. That is, the system automatically recognizes characters of vehicle plates. An automatic vehicle plate recognition consists of two main module: a vehicle plate locating module and a vehicle plate number identification module. We study for a vehicle plate number identification module in this paper. We use image preprocessing, feature extraction, multi-layer neural networks for recognizing characters of vehicle plates and we present a feature-comparison method for improving the performance of vehicle plate number identification module. In the experiment on identifying vehicle plate number, 300 images taken from various scenes were used. Of which, 8 images have been failed to identify vehicle plate number and the overall rate of success for our vehicle plate recognition algorithm is 98%.

  • PDF

Neuro-fuzzy based approach for estimation of concrete compressive strength

  • Xue, Xinhua;Zhou, Hongwei
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.697-703
    • /
    • 2018
  • Compressive strength is one of the most important engineering properties of concrete, and testing of the compressive strength of concrete specimens is often costly and time consuming. In order to provide the time for concrete form removal, re-shoring to slab, project scheduling and quality control, it is necessary to predict the concrete strength based upon the early strength data. However, concrete compressive strength is affected by many factors, such as quality of raw materials, water cement ratio, ratio of fine aggregate to coarse aggregate, age of concrete, compaction of concrete, temperature, relative humidity and curing of concrete. The concrete compressive strength is a quite nonlinear function that changes depend on the materials used in the concrete and the time. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of concrete compressive strength. The training of fuzzy system was performed by a hybrid method of gradient descent method and least squares algorithm, and the subtractive clustering algorithm (SCA) was utilized for optimizing the number of fuzzy rules. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed ANFIS model. Further, predictions from three models (the back propagation neural network model, the statistics model, and the ANFIS model) were compared with the experimental data. The results show that the proposed ANFIS model is a feasible, efficient, and accurate tool for predicting the concrete compressive strength.

Application of a support vector machine for prediction of piping and internal stability of soils

  • Xue, Xinhua
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.493-502
    • /
    • 2019
  • Internal stability is an important safety issue for levees, embankments, and other earthen structures. Since a large part of the world's population lives near oceans, lakes and rivers, floods resulting from breaching of dams can lead to devastating disasters with tremendous loss of life and property, especially in densely populated areas. There are some main factors that affect the internal stability of dams, levees and other earthen structures, such as the erodibility of the soil, the water velocity inside the soil mass and the geometry of the earthen structure, etc. Thus, the mechanism of internal erosion and stability of soils is very complicated and it is vital to investigate the assessment methods of internal stability of soils in embankment dams and their foundations. This paper presents an improved support vector machine (SVM) model to predict the internal stability of soils. The grid search algorithm (GSA) is employed to find the optimal parameters of SVM firstly, and then the cross - validation (CV) method is employed to estimate the classification accuracy of the GSA-SVM model. Two examples of internal stability of soils are presented to validate the predictive capability of the proposed GSA-SVM model. In addition to verify the effectiveness of the proposed GSA-SVM model, the predictions from the proposed GSA-SVM model were compared with those from the traditional back propagation neural network (BPNN) model. The results showed that the proposed GSA-SVM model is a feasible and efficient tool for assessing the internal stability of soils with high accuracy.

차량 현가 부품의 근사 다목적 설계 최적화에 대한 메타모델 영향도 (Meta-model Effects on Approximate Multi-objective Design Optimization of Vehicle Suspension Components)

  • 송창용;최하영;변성광
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.74-81
    • /
    • 2019
  • Herein, we performed a comparative study on approximate multi-objective design optimization, to realize a structural design to improve the weight and vibration performances of the knuckle - a car suspension component - considering various load conditions and vibration characteristics. In the approximate multi-objective optimization process, a regression meta-model was generated using the response surfaces method (RSM), while Kriging and back-propagation neural network (BPN) methods were applied for interpolation meta-modeling. The Pareto solutions, multi-objective optimal solutions, were derived using the non-dominated sorting genetic algorithm (NSGA-II). In terms of the knuckle design considered in this study, the characteristics and influence of the meta-model on multi-objective optimization were reviewed through a comparison of the approximate optimization results with the meta-models and the actual optimization.

Experimental and numerical study of autopilot using Extended Kalman Filter trained neural networks for surface vessels

  • Wang, Yuanyuan;Chai, Shuhong;Nguyen, Hung Duc
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.314-324
    • /
    • 2020
  • Due to the nonlinearity and environmental uncertainties, the design of the ship's steering controller is a long-term challenge. The purpose of this study is to design an intelligent autopilot based on Extended Kalman Filter (EKF) trained Radial Basis Function Neural Network (RBFNN) control algorithm. The newly developed free running model scaled surface vessel was employed to execute the motion control experiments. After describing the design of the EKF trained RBFNN autopilot, the performances of the proposed control system were investigated by conducting experiments using the physical model on lake and simulations using the corresponding mathematical model. The results demonstrate that the developed control system is feasible to be used for the ship's motion control in the presences of environmental disturbances. Moreover, in comparison with the Back-Propagation (BP) neural networks and Proportional-Derivative (PD) based control methods, the EKF RBFNN based control method shows better performance regarding course keeping and trajectory tracking.

ConvXGB: A new deep learning model for classification problems based on CNN and XGBoost

  • Thongsuwan, Setthanun;Jaiyen, Saichon;Padcharoen, Anantachai;Agarwal, Praveen
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.522-531
    • /
    • 2021
  • We describe a new deep learning model - Convolutional eXtreme Gradient Boosting (ConvXGB) for classification problems based on convolutional neural nets and Chen et al.'s XGBoost. As well as image data, ConvXGB also supports the general classification problems, with a data preprocessing module. ConvXGB consists of several stacked convolutional layers to learn the features of the input and is able to learn features automatically, followed by XGBoost in the last layer for predicting the class labels. The ConvXGB model is simplified by reducing the number of parameters under appropriate conditions, since it is not necessary re-adjust the weight values in a back propagation cycle. Experiments on several data sets from UCL Repository, including images and general data sets, showed that our model handled the classification problems, for all the tested data sets, slightly better than CNN and XGBoost alone and was sometimes significantly better.

Comparison of artificial intelligence models reconstructing missing wind signals in deep-cutting gorges

  • Zhen Wang;Jinsong Zhu;Ziyue Lu;Zhitian Zhang
    • Wind and Structures
    • /
    • 제38권1호
    • /
    • pp.75-91
    • /
    • 2024
  • Reliable wind signal reconstruction can be beneficial to the operational safety of long-span bridges. Non-Gaussian characteristics of wind signals make the reconstruction process challenging. In this paper, non-Gaussian wind signals are converted into a combined prediction of two kinds of features, actual wind speeds and wind angles of attack. First, two decomposition techniques, empirical mode decomposition (EMD) and variational mode decomposition (VMD), are introduced to decompose wind signals into intrinsic mode functions (IMFs) to reduce the randomness of wind signals. Their principles and applicability are also discussed. Then, four artificial intelligence (AI) algorithms are utilized for wind signal reconstruction by combining the particle swarm optimization (PSO) algorithm with back propagation neural network (BPNN), support vector regression (SVR), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM), respectively. Measured wind signals from a bridge site in a deep-cutting gorge are taken as experimental subjects. The results showed that the reconstruction error of high-frequency components of EMD is too large. On the contrary, VMD fully extracts the multiscale rules of the signal, reduces the component complexity. The combination of VMD-PSO-Bi-LSTM is demonstrated to be the most effective among all hybrid models.