• Title/Summary/Keyword: Back-pressure

Search Result 1,057, Processing Time 0.023 seconds

A Study of the Biomechanic of the Lumbar Intervertebral Disk (요추 추간원판의 생체역학에 대한 연구)

  • Choi Jin-Ho;Lee Han-Suk;Hong Wan-Sung
    • The Journal of Korean Physical Therapy
    • /
    • v.6 no.1
    • /
    • pp.163-170
    • /
    • 1994
  • Low back pain is one of the moot common human diseases, striking $70\~80$ percent of the population. Many of the causes of low back pain are unknown. Yet, degenerative and mechanical changes are regarded by some as the most common cause of low back pain is physical therapy using various types of modalities and exercise. Therefore physical therapist must understand not only structure of intervertebral disk but also biomechanics of the lumbar intervertebral disk for prevent accourance of low back pain and treat patients with low back pain. The purpose of this article was to study biomechanices of the lumbar intervertebral disk and its intradiscal pressure in various position.

  • PDF

Comparison of Buttock Pressure and Pelvic Tilting Angle During Typing in Subjects With and Without Unilateral Low Back Pain

  • Hwang, Ui-Jae;Kim, Si-Hyun;Choi, Houng-Sik;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2014
  • Asymmetric sitting posture may cause asymmetric buttock pressure and unilateral low back pain (LBP). The purpose of this study was to compare the differences of buttock pressure between both sides, and pelvic angle (sagittal and coronal planes) during typing in a sitting position on a pressure mat (Baltube) in individuals with and without unilateral LBP. Ten subjects with unilateral LBP and ten subjects without unilateral LBP were recruited for this study. Buttock pressure was measured using a pressure mat and pelvic angles were measured using a palpation meter. The subjects performed typing in a sitting posture for 30 minutes. Pressure data were collected and averaged at initial term (from start to first minutes) and final term (last minutes of 30 minutes). Angles of pelvic tilting were measured after 30 minutes typing. Pressure asymmetry values (difference in pressure between both sides) were calculated at the initial and final terms. A two-way analysis of variance was used to compare the differences between the initial and final pressure asymmetry values in subjects with and without unilateral LBP. An independent t-test was applied to compare the pelvic tilt angles between the two groups. To compare the change of pressure from the initial term to the final term between the symptomatic and asymptomatic sides in the unilateral LBP group, a paired t-test was applied. In the unilateral LBP group, the pressure asymmetric value at the final term was significantly greater than that of the initial term (p<.05). The angle of pelvic tilting in coronal plane was significantly greater in the unilateral back pain group compared to the without unilateral LBP group (p<.05), however, there was no significant difference in the angle of pelvic tilting in the sagittal plane between the two groups (p>.05). In the unilateral LBP group, the change of pressure from the initial term to the final term was significantly less in the symptomatic side (-6.90 mmHg) than the asymptomatic side (5.10 mmHg). This asymmetric sitting posture may contribute to unilateral LBP in the sitting position. Further studies are needed to determine if asymmetric weight bearing in sitting causes unilateral LBP or if unilateral back pain causes asymmetric weight bearing, and if the correction of asymmetric weight bearing in sitting can reduce unilateral LBP.

Performance Analysis on CHP Plant using Back Pressure Turbine according to Return Temperature Variation (배압터빈을 사용하는 열병합발전소의 열 회수 온도에 따른 성능특성 분석)

  • Im, Shin Young;Lee, Jong Jun;Jeon, Young-Shin;Kim, Hyung-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.26-33
    • /
    • 2016
  • Combined heat and power (CHP) system is one of the power generation system which can generate both electricity and heat. Generally, mid-size and big-size CHP plant in Korea generate electricity from gas turbine and steam turbine, then supply heat from exhaust gas. Actually, CHP can supply heat using district heater which is located at low pressure turbine exit or inlet. When the district heater locates after low pressure turbine, which called back pressure type turbine, there need neither condenser nor mode change operating control logic. When the district heater locates in front of low pressure turbine or uses low pressure turbine extraction steam flow, which calls condensing type turbine, which kind of turbine requires condenser. In this case, mode change operation methods are used for generating maximum electricity or maximum heat according to demanding the seasonal electricity and heat.

Evaluation of shield TBM segment acting load through monitoring data back analysis (계측 데이터 역해석을 통한 쉴드 TBM 터널 세그먼트의 작용하중 평가)

  • Lee, Gyu-Phil;Chang, Soo-Ho;Bae, Gyu-Jin;Choi, Soon-Wook;Ahn, Chang-Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.905-913
    • /
    • 2017
  • To design segment lining, loads such as self weight, vertical load, horizontal load, ground reaction, water pressure, backfill grouting pressure et al. have to be considered. Earth pressure and water pressure are the major factor to design segment lining such as concrete strength, segment thickness and amount of rebar et al. To analysis earth pressure and water pressure acting on segment lining, filed monitoring and back analysis are performed in this study.

Muffler Design Using Transmission Loss Prediction Considering Heat and Flow (열과 유동을 고려한 음장해석을 통한 머플러의 설계)

  • Kim, Hyunsu;Kang, Sang-Kyu;Lim, Yun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.600-605
    • /
    • 2014
  • Two mufflers for a large-size sedan are suggested aiming (1) sporty-sound and (2) quiet-sound as well as both satisfying low back-pressure and low manufacturing cost. Transmission loss prediction considering heat and flow may increase the accuracy and reduce the development cost in muffler design; thus, GT-power prediction considering heat, flow, and acoustics is utilized. By understanding the fundamentals of flow-acoustic theory in small orifice(hole), an effective muffler design concept is proposed. Vehicle tests show the consistence with predictions for sound; also a back-pressure test bench confirms the advantage in pressure drop for both suggested mufflers. Those suggested mufflers also have advantages in manufacturing cost due to simplicity of the design.

Development of an Analysis and Design System of Exhaust Mufflers (배기소음기의 음향해석 및 설계시스템 개발)

  • 황원걸;이유엽;김기세;홍석기;박동철;정승균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.204-210
    • /
    • 2003
  • A PC-based analysis and design system of exhaust muffler is described. It makes use of software packages such as Sysnoise and STAR-CD to calculate transmission loss(TL) and back pressure. The system is applied to redesign a main muffler of passenger car to improve its performance. The effects of design parameters on acoustic and pressure loss characteristics are examined. Taguchi method Is used to determine optimal combination of parameters which affects muffler performances such as TL and back pressure. Three models are chosen and compared in laboratory bench test and engine dynamometer test to prove their performances.

The effect of exhaust system components on combustion characteristics of SI engine (배기시스템 구성요소가 SI기관의 연소특성에 미치는 영향)

  • Park Kyoungsuk;Park Sejong;Choi Seokryeol;Son Sungman
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.138-143
    • /
    • 2005
  • Recently, automobile manufacturers regarding stability, economic environmental-friendly problems by the development of automobile, environmental problem as designing the exhaust system. Increasingly strict environmental regulations to lower fuel consumption and reduce emission. Also to reduce the noise and the vibration of the automobile. According to develop variable type muffler, dual muffler and active intelligence exhaust system unit. Improvement in engine performance and fuel consumption rate demand information of pressure fraction and heat characteristics. To be able to determine these factor for we experiment on each case of exhaust system unit. In this study, how back pressure is distributed in flow-through in exhaust system and how to design exhaust system flexibleness, efficiency and combustion charateristics influenced by back pressure. This study furnish basic data for engineers, technicians.

DTN Routing with Back-Pressure based Replica Distribution

  • Jiao, Zhenzhen;Tian, Rui;Zhang, Baoxian;Li, Cheng
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.378-384
    • /
    • 2014
  • Replication routing can greatly improve the data delivery performance by enabling multiple replicas of the same packet to be transmitted towards its destination simultaneously. It has been studied extensively recently and is now a widely accepted routing paradigm in delay tolerant networks (DTNs). However, in this field, the issue of how to maximize the utilization efficiency of limited replication quota in a resource-saving manner and therefore making replication routing to be more efficient in networks with limited resources has not received enough attention. In this paper, we propose a DTN routing protocol with back-pressure based replica distribution. Our protocol models the replica distribution problem from a resource allocation perspective and it utilizes the idea of back-pressure algorithm, which can be used for providing efficient network resource allocation for replication quota assignment among encountered nodes. Simulation results demonstrate that the proposed protocol significantly outperforms existing replication routing protocols in terms of packet delay and delivery ratio.

A study of the transfer characteristics of pressure waves using two-port network analysis in exhaust system of engine (양단자 회로망 분석을 이용한 기관배기계의 압력파 전달특성에 관한 연구)

  • 이준서;유병구;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated by pulsating gas flow due to working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave propagation in exhaust system because of nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function, back pressure, and gradient of temperature in exhaust system.

  • PDF

Seat Pressure Distribution Characteristics During 1 Hour Sitting in Office Workers With and Without Chronic Low Back Pain

  • Akkarakittichoke, Nipaporn;Janwantanakul, Prawit
    • Safety and Health at Work
    • /
    • v.8 no.2
    • /
    • pp.212-219
    • /
    • 2017
  • Background: Low back pain (LBP) is a major problem for office workers. Individuals adopting poor postures during prolonged sitting have a considerably increased risk of experiencing LBP. This study aimed to investigate seat pressure distribution characteristics, i.e., average pressure, peak pressure ratio, frequency of postural shift, and body perceived discomfort (BPD), during 1 hour of sitting among office workers with and without chronic LBP. Methods: Forty-six participants (chronic LBP = 23, control = 23) typed a standardized text passage at a computer work station for an hour. A seat pressure mat device was used to collect the seat pressure distribution data. Body discomfort was assessed using the Body Perceived Discomfort scale. Results: Office workers with chronic LBP sat significantly more asymmetrically than their healthy counterparts. During 1-hour sitting, all workers appeared to assume slumped sitting postures after 20 minutes of sitting. Healthy workers had significantly more frequent postural shifts than chronic LBP workers during prolonged sitting. Conclusion: Different sitting characteristics between healthy and chronic LBP participants during 1 hour of sitting were found, including symmetry of sitting posture and frequency of postural shift. Further research should examine the roles of these sitting characteristics on the development of LBP.