• Title/Summary/Keyword: Back-flow

Search Result 799, Processing Time 0.031 seconds

Stall and Counter-measure for Large Size Axial-Flow Fan (대형축류팬의 실속과 대책)

  • Shim, Eui-Bo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.70-77
    • /
    • 1998
  • The rise in pressure across the impeller blade of an axial flow fan depends on the angle of attack. At a low back pressure, the air volume will be large and the angle of attack is small. The gradual increase of the back pressure approached stall zone which is not stationary but travels blade to blade passage. In consequence, a region occurs around these blades with large vibration in the flow. To avoid these stall operation, the stall detector in the axial flow fans has been designed to detect stalling condition with a manometer or differential pressure switch by electric mechanism.

  • PDF

The Technology to Control the Flow Velocity of Non-Symmetric Rib-Web Shape Hot Forged Part (비대칭 리브-웨브형상 열간 단조품의 변형 속도 제어 기술)

  • 이영선;이정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.209-215
    • /
    • 2000
  • Precision forging technology that can control flow velocity of workpiece have been developed to minimize the amounts of machining. To get the uniform rib length, flow velocity distribution is needed to be estimated and controlled. Computer-aided design is known for very effective to estimate the deformation behavior and design the die for controlling the flow velocity. In this study, die design to control the deformation velocity are investigated using the DEFORM-2D about rib-web shape parts. Also we can get uniform rib length by enforcing the back pressure at end section of rib. The applied load of back pressure farming is lower than that of conventional forging. These results are analysed and confirmed by the experiment.

  • PDF

Second Order Bounce Back Boundary Condition for the Latice Boltzmann Fluid Simulation

  • Kim, In-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.84-92
    • /
    • 2000
  • A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method.

  • PDF

Aerodynamics of tapered and set-back buildings using Detached-eddy simulation

  • Sharma, Ashutosh;Mittal, Hemant;Gairola, Ajay
    • Wind and Structures
    • /
    • v.29 no.2
    • /
    • pp.111-127
    • /
    • 2019
  • The tapered and set-back type of unconventional designs have been used earlier in many buildings. These shapes are aerodynamically efficient and offer a significant amount of damping against wind-induced forces and excitations. Various studies have been conducted on these shapes earlier. The present study adopts a hybrid approach of turbulence modelling i.e., Detached-eddy Simulation (DES) to investigate the effect of height modified tapered and set-back buildings on aerodynamic forces and their sensitivity towards pressure. The modifications in the flow field around the building models are also investigated and discussed. Three tapering ratios (T.R.=(Bottom width- Top width)/Height) i.e., 5%, 10%, 15% are considered for tapered and set-back buildings. The results show that, mean and RMS along-wind and across-wind forces are reduced significantly for the aerodynamically modified buildings. The extent of reduction in the forces increases as the taper ratio is increased, however, the set-back modifications are more worthwhile than tapered showing greater reduction in the forces. The pressure distribution on the surfaces of the buildings are analyzed and in the last section, the influence of the flow field on the forces is discussed.

Study of the Operation Characteristics of the Supersonic Steam Ejector System (초음속 증기 이젝터 시스템의 작동 특성에 관한 연구)

  • Kim, H.D.;Lee, J.H.;Woo, S.H.;Choi, B.G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.329-334
    • /
    • 2001
  • In order to investigate the operating characteristics of a supersonic steam ejector, the axisymmetric, compressible, Reynolds-averaged, Navier-Stokes computations are performed using a finite volume method. The secondary and back pressures of the ejector system with a second throat are changed to investigate their effects on the suction mass flow. Three operation modes of the steam ejector system, the critical mode, subcritical mode and back flow mode, are discussed to predict the critical suction mass flow. The present computations are validated with some experimental results. The secondary and back pressures of the supersonic steam ejector significantly affect the critical suction mass flow. The present computations predict the experimented critical mass flow with fairly good accuracy. A good correlation is obtained for the critical suction mass flow. The present results show that provided the primary nozzle configuration and secondary pressure are known, we can predict the critical mass flow with good accuracy.

  • PDF

Transient stability improvement using quasi-multi pulse BTB-STATCOM

  • Vural, Ahmel M.;Bayindi, Kamil C.
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Back-to-back STATCOM configuration is an extension of STATCOM in which the reactive power at two-sides and the real power flow through the DC link can be controlled concurrently and independently. This flexible operation brings many advantages to the micro-grids, distributed generation based systems, and deregulated power systems. In this paper, the dynamic control characteristics of the back-to-back STATCOM is investigated by simulating the detailed converter-level model of the converters in PSCAD. Various case studies in a single-machine test system are studied to present that the real power control feature of the BtB-STATCOM, even with a simple controller design, can enhance the transient stability of the machine under different fault scenarios.

A Characteristics of Smoke Layer Formation Affected Periodicity of Fire Plumes (Plume의 주기성이 연층형성에 미치는 영향)

  • 한용식;김명배;오광철;신현동
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.38-42
    • /
    • 2002
  • This experiment is to understand a characteristics of smoke layer formation affected periodicity of fire plumes. The ON-OFF jet was used to constitute the oscillating flow, which was formed by a mixture of nitrogen gas with kerosene particles. The instantaneous images was obtained by digital video camera using laser sheet technique. The results were confirmed that the smoke layer in the near fire source comprise vortices which are formed by impingement from the periodicity of fire plume. The periodic impinging of plumes were thickened the smoke layer and produced the back-flow.

Study of the Operation Characteristics of the Supersonic Steam Ejector System (초음속 증기 이젝터 시스템의 작동 특성에 관한 연구)

  • 김희동;이준희;우선훈;최보규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.33-40
    • /
    • 2001
  • In order to investigate the operating characteristics of a supersonic steam ejector, the axisymmetric, compressible, Reynolds-averaged, Wavier-Stokes computations are performed using a finite volume method. The secondary and back pressures of the ejector system with a second throat are changed to investigate their effects on the suction mass flow. Three operation modes of the steam ejector system, the critical mode, subcritical mode and back flow mode, are discussed to predict the critical suction mass flow. The present computations are validated with some experimental results. The secondary and back pressures of the supersonic steam ejector significantly affect the critical suction mass flow. The present computations predict the experimented critical mass flow with fairly good accuracy A good correlation is obtained for the critical suction mass flow. The present results show that provided the primary nozzle configuration and secondary pressure are blown, we can predict the critical mass flow with good accuracy.

  • PDF

Performance Characteristics of In-Line Duct Fan Having Mixed Flow Impellers (혼류임펠러를 갖는 관류형팬의 성능특성)

  • Park, Jin-Wook;Lee, Chul-Hyung;Park, Wan-Soon;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.79-85
    • /
    • 2007
  • The performance of in-line duct fan depends on the design parameters of impeller and guide vane such as sweep back angle of impeller hub, guide vane angle etc. In this study four kinds of impellers having different sweep back angles, $0^{\circ}$, $17.5^{\circ}$, $35^{\circ}$, $52.5^{\circ}$ with 8 guide vanes, and different guide vane angles, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ were selected and their performance measured to investigate the effects of design parameters. The results show that both sweep back angle of impeller hub and the guide vane angle have large effect on the efficiency. Especially, it was found that the mixed flow impellers having sweep back angle between $17.5^{\circ}$ and $35^{\circ}$ gave good performances for in-line duct fan.

Study on the Forward-sweep Inducer for Turbopumps (터보펌프용 전진익형 인듀서에 대한 연구)

  • Kim, Jin-Sun;Hong, Soon-Sam;Kim, Jin-Han;Choi, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.25-29
    • /
    • 2006
  • Computational and experimental studies on the forward-sweep inducer for the rocket-engine turbopump are presented in comparison with the conventional backward-sweep inducer. Computational results show that back flows at the inlet decrease in the case of forward-sweep inducers compared to the back-ward inducer. Moreover, the low pressure region at the back flow is decreased, which is presumed to improve the suction performance of the inducers. Experimental results show that the suction performance of the forward-sweep inducer is almost the same as that of the backward-sweep inducer although it has smaller inlet tip diameter and shorter length. The efficiency of the forward-type inducer is found better than that of the backward-sweep inducer due to the small size of back flows.