• Title/Summary/Keyword: Back-Propagation Learning Algorithm

Search Result 386, Processing Time 0.034 seconds

A Study on Instrumentation Results Analysis Using Artificial Neural Network in Tunnel Area (인공신경망을 이용한 터널시공 시 계측결과 분석에 관한 연구)

  • Lee, Jong-Hwi;Han, Dong-Geun;Byun, Yo-Seph;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.21-31
    • /
    • 2010
  • Although it is important to reflect the accurate information of the ground condition in the tunnel design, the analysis and design are conducted by limited information because it is very difficult to get it practically on considering various geography and geotechnical condition. So construction management of information concept is required to manage immediately on the field condition because it is very time-consuming to establish the countermeasure of underground reinforcement and the pattern change of Bo. Therefore, when construction is on tunnel area, examination of accurate safety and prediction of behavior is performed to overcomes the limit of predicting behavior by using Artificial Neural Network(ANN) in this study. Firstly, the field data was secured. Secondly, suitable structure was made on multi-layer perceptrons among the ANN. Thirdly, learning algorithm-propagated applies to ANN. The data for the learn of field application using ANN was used by considering impact factors, which influenced the behavior of tunnel, and performing credibility analysis. crown displacement, spring displacement, subsurfacement, and rock bolt axial force are predicted at the tunnel construction and on-site application was confirmed by using ANN from analyzing and comparing with measurement value of on-site. In this study, the data from Seoul Highway $\bigcirc\bigcirc$ tunnel section was applied to the ANN Theory, and the analysis on the investigate value and the reasoning for the value associated with field application was performed.

  • PDF

Terrain Feature Extraction and Classification using Contact Sensor Data (접촉식 센서 데이터를 이용한 지질 특성 추출 및 지질 분류)

  • Park, Byoung-Gon;Kim, Ja-Young;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.171-181
    • /
    • 2012
  • Outdoor mobile robots are faced with various terrain types having different characteristics. To run safely and carry out the mission, mobile robot should recognize terrain types, physical and geometric characteristics and so on. It is essential to control appropriate motion for each terrain characteristics. One way to determine the terrain types is to use non-contact sensor data such as vision and laser sensor. Another way is to use contact sensor data such as slope of body, vibration and current of motor that are reaction data from the ground to the tire. In this paper, we presented experimental results on terrain classification using contact sensor data. We made a mobile robot for collecting contact sensor data and collected data from four terrains we chose for experimental terrains. Through analysis of the collecting data, we suggested a new method of terrain feature extraction considering physical characteristics and confirmed that the proposed method can classify the four terrains that we chose for experimental terrains. We can also be confirmed that terrain feature extraction method using Fast Fourier Transform (FFT) typically used in previous studies and the proposed method have similar classification performance through back propagation learning algorithm. However, both methods differ in the amount of data including terrain feature information. So we defined an index determined by the amount of terrain feature information and classification error rate. And the index can evaluate classification efficiency. We compared the results of each method through the index. The comparison showed that our method is more efficient than the existing method.

A Study of Land Suitability Analysis by Integrating GSIS with Artificial Neural Networks (GSIS와 인공신경망의 결합에 의한 토지적합성분석에 관한 연구)

  • 양옥진;정영동
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.179-189
    • /
    • 2000
  • This study is tried to organic combination in implementing the suitability analysis of urban landuse between GSIS and ANN(Artificial Neural Network). ANN has merit that can decide rationally connectivity weights among neural network nodes through procedure of learning. It is estimated to be possible that replacing the weight among factors needed in spatial analysis of the connectivity weight on neural network. This study is composed of two kinds of neural networks to be executed. First neural network was used in the suitability analysis of landuse and second one was oriented to analyze of optimum landuse pattern. These neural networks were learned with back-propagation algorithm using the steepest gradient which is embodied by C++ program and used sigmoid function as a active function. Analysis results show landuse suitability map and optimum landuse pattern of study area consisted of residental, commercial. industrial and green zone in present zoning system. Each result map was written by the Grid format of Arc/Info. Also, suitability area presented in the suitability map and optimum landuse pattern show distribution pattern consistent with theroretical concept or urban landuse plan in aspect of location and space structure.

  • PDF

Optimal Welding Condition for the Inclined and Skewed Fillet Joints ill the Curved Block of a Ship (I) (선박 골블록의 경사 필렛 이음부의 적정 용접조건 (I))

  • PARK JU-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.79-83
    • /
    • 2004
  • The curved blocks which compose the bow and stem of a ship contain many skewed joints that are inclined horizontally and vertically. Most of these joints have a large fitness error and are continuously changing their form and are not easily accessible. The welding position and parameter values should be appropriately set in correspondence to the shape and the inclination of the joints. The welding parameters such as current, voltage, travel speed, and melting rate, are related to each other and their values must be in a specific limited range for the sound welding. These correlations and the ranges are dependent up on the kind and size of wire, shielding gas, joint shape and fitness. To determine these relationships, extensive welding experiments were performed. The experimental data were processed using several information processing technologies. The regression method was used to determine the relationship between current voltage, and deposition rate. When a joint is inclined, the weld bead should be confined to a the limited size, inorder to avoid undercut as well as overlap due to flowing down of molten metal by gravity. The dependency of the limited weld size which is defined as the critical deposited area on various factors such as the horizontally and vertically inclined angle of the joint, skewed angle of the joint, up or down welding direction and weaving was investigated through a number of welding experiments. On the basis of this result, an ANN system was developed to estimate the critical deposited area. The ANN system consists of a 4 layer structure and uses an error back propagation learning algorithm. The estimated values of the ANN were validated using experimental values.

Servo Control of Hydraulic Motor using Artificial Intelligence (인공지능을 이용한 유압모터의 서보제어)

  • 신위재;허태욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.49-54
    • /
    • 2003
  • In this paper, we propose a controller with the self-organizing neural network compensator for compensating PID controller's response. PID controller has simple design method but needs a lot of trials and errors to determine coefficients. A neural network control method does not have optimal structure as the parameters are pre-specified by designers. In this paper, to solve this problem, we use a self-organizing neural network which has Back Propagation Network algorithm using a Gaussian Potential Function as an activation function of hidden layer nodes for compensating PID controller's output. Self-Organizing Neural Network's learning is proceeded by Gaussian Function's Mean, Variance and number which are automatically adjusted. As the results of simulation through the second order plant, we confirmed that the proposed controller get a good response compare with a PID controller. And we implemented the of controller performance hydraulic servo motor system using the DSP processor. Then we observed an experimental results.

  • PDF

A Study on Image Recognition based on the Characteristics of Retinal Cells (망막 세포 특성에 의한 영상인식에 관한 연구)

  • Cho, Jae-Hyun;Kim, Do-Hyeon;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2143-2149
    • /
    • 2007
  • Visual Cortex Stimulator is among artificial retina prosthesis for blind man, is the method that stimulate the brain cell directly without processing the information from retina to visual cortex. In this paper, we propose image construction and recognition model that is similar to human visual processing by recognizing the feature data with orientation information, that is, the characteristics of visual cortex. Back propagation algorithm based on Delta-bar delta is used to recognize after extracting image feature by Kirsh edge detector. Various numerical patterns are used to analyze the performance of proposed method. In experiment, the proposed recognition model to extract image characteristics with the orientation of information from retinal cells to visual cortex makes a little difference in a recognition rate but shows that it is not sensitive in a variety of learning rates similar to human vision system.

A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image (실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Seok, Jin-Wook;Kim, Ki-Sang;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

Developing a Neural-Based Credit Evaluation System with Noisy Data (불량 데이타를 포함한 신경망 신용 평가 시스템의 개발)

  • Kim, Jeong-Won;Choi, Jong-Uk;Choi, Hong-Yun;Chuong, Yoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.2
    • /
    • pp.225-236
    • /
    • 1994
  • Many research result conducted by neural network researchers claimed that the degree of generalization of the neural network system is higher or at least equal to that of statistical methods. However, those successful results could be brought only if the neural network was trained by appropriately sound data, having a little of noisy data and being large enough to control noisy data. Real data used in a lot of fields, especially business fields, were not so sound that the network have frequently failed to obtain satisfactory prediction accuracy, the degree of generalization. Enhancing the degree of generalization with noisy data is discussed in this study. The suggestion, which was obtained through a series of experiments, to enhance the degree of generalization is to remove inconsistent data by checking overlapping and inconsistencies. Furthermore, the previous conclusion by other reports is also confirmed that the learning mechanism of neural network takes average value of two inconsistent data included in training set[2]. The interim results of on-going research project are reported in this paper These are ann architecture of the neural network adopted in this project and the whole idea of developing on-line credit evaluation system,being intergration of the expert(resoning)system and the neural network(learning system.Another definite result is corroborated through this study that quickprop,being agopted as a learing algorithm, also has more speedy learning process than does back propagation even in very noisy environment.

  • PDF

Determination of Optimum Heating Regions for Thermal Prestressing Method Using Artificial Neural Network (인공신경망을 이용한 온도프리스트레싱 공법의 적정 가열구간 설정에 관한 연구)

  • Kim, Jun Hwan;Ahn, Jin-Hee;Kim, Kang Mi;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.695-702
    • /
    • 2007
  • The Thermal Prestressing Method for continuous composite girder bridges is a new design and construction method developed to induce initial composite stresses in the concrete slab at negative bending regions. Due to the induced initial stresses, prevention of tensile cracks at the concrete slab, reduction of steel girder section, and reduction of reinforcing bars are possible. Thus, the construction efficiency can be improved and the construction can be made more economical. The method for determining the optimum heating region of the thermal prestressing method has not been established although such method is essential for improving the efficiency of the design process. The trial-and-error method used in previous studies is far from efficient, and a more rational method for computing optimal heating region is required. In this study, an efficient method for determining the optimum heating region in using the thermal prestressing method was developed based on the neural network algorithm, which is widely adopted to pattern recognition, optimization, diagnosis, and estimation problems in various fields. Back-propagation algorithm, commonly used as a learning algorithm in neural network problems, was used for the training of the neural network. Through case studies of two-span and three-span continuous composite girder bridges using the developed procedure, the optimal heating regions were obtained.

Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms (HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화)

  • 오성권;박호성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.487-496
    • /
    • 2000
  • In this paper, the Multi-FNN(Fuzzy-Neural Networks) model is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNN is based on Yamakawa's FNN and uses simplified inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and Genetic Algorithms(GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. The aggregate performance index stands for an aggregate objective function with a weighting factor to consider a mutual balance and dependency between approximation and predictive abilities. According to the selection and adjustment of a weighting factor of this aggregate abjective function which depends on the number of data and a certain degree of nonlinearity, we show that it is available and effective to design an optimal Multi-FNN model. To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF