• Title/Summary/Keyword: Back-Propagation

Search Result 1,472, Processing Time 0.026 seconds

Development of Feature Selection Method for Neural Network AE Signal Pattern Recognition and Its Application to Classification of Defects of Weld and Rotating Components (신경망 AE 신호 형상인식을 위한 특징값 선택법의 개발과 용접부 및 회전체 결함 분류에의 적용 연구)

  • Lee, Kang-Yong;Hwang, In-Bom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.46-53
    • /
    • 2001
  • The purpose of this paper is to develop a new feature selection method for AE signal classification. The neural network of back propagation algorithm is used. The proposed feature selection method uses the difference between feature coordinates in feature space. This method is compared with the existing methods such as Fisher's criterion, class mean scatter criterion and eigenvector analysis in terms of the recognition rate and the convergence speed, using the signals from the defects in welding zone of austenitic stainless steel and in the metal contact of the rotary compressor. The proposed feature selection methods such as 2-D and 3-D criteria showed better results in the recognition rate than the existing ones.

  • PDF

Development of Defect Classification Program by Wavelet Transform and Neural Network and Its Application to AE Signal Deu to Welding Defect (웨이블릿 변환과 인공신경망을 이용한 결함분류 프로그램 개발과 용접부 결함 AE 신호에의 적용 연구)

  • Kim, Seong-Hoon;Lee, Kang-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.54-61
    • /
    • 2001
  • A software package to classify acoustic emission (AE) signals using the wavelet transform and the neural network was developed Both of the continuous and the discrete wavelet transforms are considered, and the error back-propagation neural network is adopted as m artificial neural network algorithm. The signals acquired during the 3-point bending test of specimens which have artificial defects on weld zone are used for the classification of the defects. Features are extracted from the time-frequency plane which is the result of the wavelet transform of signals, and the neural network classifier is tamed using the extracted features to classify the signals. It has been shown that the developed software package is useful to classify AE signals. The difference between the classification results by the continuous and the discrete wavelet transforms is also discussed.

  • PDF

Eddy Current Flaw Characterization Using Neural Networks (신경회로망을 이용한 와전류 결함 특성 평가)

  • Song, S.J.;Park, H.J.;Shin, Y.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.6
    • /
    • pp.464-476
    • /
    • 1998
  • Determination of location, shape and size of a flaw from its eddy current testing signal is one of the fundamental issues in eddy current nondestructive evaluation of steam generator tubes. Here, we propose an approach to this problem; an inversion of eddy current flaw signal using neural networks trained by finite element model-based synthetic signatures. Total 216 eddy current signals from four different types of axisymmetric flaws in tubes are generated by finite element models of which the accuracy is experimentally validated. From each simulated signature, total 24 eddy current features are extracted and among them 13 features are finally selected for flaw characterization. Based on these features, probabilistic neural networks discriminate flaws into four different types according to the location and the shape, and successively back propagation neural networks determine the size parameters of the discriminated flaw.

  • PDF

Analysis of Hyperbolic Heat Conduction in a Thin Film (박막에서 쌍곡선형 열전도 방정식에 의한 열전도 해석)

  • 정우남;이용호;조창주
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.540-545
    • /
    • 1999
  • The classical Fourier heat conduction equation is invalid at temperatures near absolute zero or at very early times in highly transient heat transfer processes. In such situations, a hyperbolic equation model for heat conduction based on the modified Fourier law is introduced because the wave nature of heat propagation becomes dominant. The Fourier model and the hyperbolic model for heat conduction are analyzed by using the Green's function technique together with the integral transform. Analytical expressions for the heat flux and temperature distributions in a finite slab subjected to a periodic surface heating at one of its surfaces are presented and the results obtained from each model are compared with each other. The thermal wave implied b the hyperbolic model is shown to travel through a medium and to reflect back toward the origin at the other insulated surface. On the other hand, the heat by the Fourier model propagates at an infinite speed instantaneously after a thermal disturbance is felt throughout the medium.

  • PDF

Efficient Algorithms for Causal Message Logging and Revoery (인과적 메시지 로그 및 복구를 위한 효율적인 알고리즘)

  • Lee, Byeong-Ju;Park, Tae-Sun;Yeom, Heon-Yeong;Jo, Yu-Geun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.7
    • /
    • pp.767-777
    • /
    • 1999
  • 인과적 메시지 로깅 기법은 정상프로세스를 역전(roll-back)시키거나 메시지의 저장을 위해 프로세스의 수행을 중단시키지 않는 장점을 지니고 있지만, 메시지의 크기가 지나치게 커진다는 단점을 지니고 있다. 본 논문에서는 인과적 메시지 로깅 기법의 이러한 문제점을 해결하기 위하여 로그 상속의 개념을 정의하고 로그 연혁을 이용하여 로그 비용, 특히 로그 크기 면에서 효율적인 로깅 기법을 제안한다. 또한 이 로깅 알고리즘을 이용하여 복구시 메시지의 수와 크기를 줄여 복구시간을 줄이는 효율적인 복구 알고리즘을 제안하고, 제안한 알고리즘이 메시지 로그 크기 면에서 효율적임을 증명한다. 또 제안한 알고리즘의 성능을 검증하기 위하여 두 가지 종류의 모의 실험을 수행하여 기존의 로깅 프로토콜과 메시지 크기 면에서의 성능을 비교한 결과를 제시하였다.Abstract Causal message logging has many good properties such as nonblocking message logging and no rollback propagation. However, it requires a large amount of information to be piggybacked on each message, which may incur severe performance degradation. This paper presents an efficient causal logging algorithm based on the new message log structure, LogOn, which represents the causal inter-process dependency relation with much smaller overhead compared to the existing algorithms. The proposed algorithm is efficient in the sense that it entails no additional information other than LogOn to be carried in each message, while other existing algorithms require extra information other than the message logs. This paper also presents an efficient recovery algorithm to solve the problem of a large amount of data exchanges during the recovery. To verify the performance of our algorithm, we give an analysis of the algorithm and perform two simulations and compare the log size with other causal logging protocols.

A Study on Image Recognition based on the Characteristics of Retinal Cells (망막 세포 특성에 의한 영상인식에 관한 연구)

  • Cho, Jae-Hyun;Kim, Do-Hyeon;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2143-2149
    • /
    • 2007
  • Visual Cortex Stimulator is among artificial retina prosthesis for blind man, is the method that stimulate the brain cell directly without processing the information from retina to visual cortex. In this paper, we propose image construction and recognition model that is similar to human visual processing by recognizing the feature data with orientation information, that is, the characteristics of visual cortex. Back propagation algorithm based on Delta-bar delta is used to recognize after extracting image feature by Kirsh edge detector. Various numerical patterns are used to analyze the performance of proposed method. In experiment, the proposed recognition model to extract image characteristics with the orientation of information from retinal cells to visual cortex makes a little difference in a recognition rate but shows that it is not sensitive in a variety of learning rates similar to human vision system.

Landslide Detection and Landslide Susceptibility Mapping using Aerial Photos and Artificial Neural Networks (항공사진을 이용한 산사태 탐지 및 인공신경망을 이용한 산사태 취약성 분석)

  • Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • The aim of this study is to detect landslide using digital aerial photography and apply the landslide to landslide susceptibility mapping by artificial neural network (ANN) and geographic information system (GIS) at Jinbu area where many landslides have occurred in 2006 by typhoon Ewiniar, Bilis and Kaemi. Landslide locations were identified by visual interpretation of aerial photography taken before and after landslide occurrence, and checked in field. For landslide susceptibility mapping, maps of the topography, geology, soil, forest, lineament, and landuse were constructed from the spatial data sets. Using the factors and landslide location and artificial neural network, the relative weight for the each factors was determinated by back-propagation algorithm. As the result, the aspect and slope factor showed higher weight in 1.2-1.5 times than other factors. Then, landslide susceptibility map was drawn using the weights and finally, the map was validated by comparing with landslide locations that were not used directly in the analysis. As the validation result, the prediction accuracy showed 81.44%.

Application Assessment of water level prediction using Artificial Neural Network in Geum river basin (인공신경망을 이용한 금강 유역 하천 수위예측 적용성 평가)

  • Yu, Wansikl;Kim, Sunmin;Kim, Yeonsu;Hwang, Euiho;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.424-424
    • /
    • 2018
  • 인공신경망(Artificial Neural Network; ANN)은 뇌에 존재하는 생물학적 신경세포와 이들의 신호처리 과정을 수학적으로 묘사하여 뇌가 나타내는 지능적 형태의 반응을 구현한 것이다. 인공신경망은 학습(training)을 통해 입력과 출력으로 구성되는 하나의 시스템을 병렬적이고 비선형적으로 구축할 수 있으며, 유연한 모델링 특성으로 인하여 시스템 예측, 패턴인식, 분류 및 공정제어 등의 다양한 분야에서 활용되고 있다. 인공신경망에 대한 최초의 이론은 Muculloch and Pitts(1943)가 제안한 Perceptron에서 시작 되었으며, 기본적인 학습기법인 오차역전파 기법(back-propagation Algorithm) 이 1980년대에 들어 수학적으로 정립된 이후 여러 분야에서 활용되기 시작하였다). 본 연구에서는 하도추적, 구체적으로는 상류단의 복수의 수위관측을 이용하여 하류단의 수위를 예측하기 위하여 인공신경망 모델을 구성하였다. 대상하도는 금강유역의 용담댐과 대청댐 사이의 본류이며, 상류단 입력자료로써 본류에 있는 수통, 호탄 관측소 관측수위와 지류인 송천 관측소 관측수위를 고려하였다. 출력 값으로는 하류단의 옥천 관측소 수위를 3시간 및 6시간의 선행시간으로 예측하도록 인공신경망 모형을 구성하였다. 인공신경망의 학습(testing), 시험(testing), 검증(validation)을 위해 2000년부터 2012년까지 13년간의 시수위자료를 이용하여 학습을 진행하였으며, 2013년부터 2014년의 2년간의 수위자료를 이용한 시험을 통해 최적의 모형을 선정하였다. 또한 선정된 최적의 모형을 이용하여 2015년부터 2016년까지의 수위예측을 수행하였다.

  • PDF

Artificial neural network for predicting nuclear power plant dynamic behaviors

  • El-Sefy, M.;Yosri, A.;El-Dakhakhni, W.;Nagasaki, S.;Wiebe, L.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3275-3285
    • /
    • 2021
  • A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies.

Kindergarten space design based on BP (back propagation) neural network (BP 신경 망 기반 유치원 공간 설계)

  • Liao, PengCheng;Pan, Younghwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • In the past, designers relied primarily on past experience and reference to industry standard thresholds to design spaces. Such design often results in spaces that do not meet the needs of users. The purpose of this paper is to investigate the process and way of generating design parameters by constructing a BP neural network algorithm for spatial design. From the perspective. This paper adopts an experimental research method to take a kindergarten with a large number of complex needs in space as the object of study, and through the BP neural network algorithm in machine learning, the correlation between environmental behavior parameters and spatial design parameters is imprinted. The way of generating spatial design parameters is studied. In the future, the corresponding spatial design parameters can be derived by replacing specific environmental behavior influence factors, which can be applied to a wider range of scenarios and improve the efficiency of designers.