• Title/Summary/Keyword: Back-Propagation

Search Result 1,472, Processing Time 0.024 seconds

Prediction of Influent Flow Rate and Influent Components using Artificial Neural Network (ANN) (인공 신경망(ANN)에 의한 하수처리장의 유입 유량 및 유입 성분 농도의 예측)

  • Moon, Taesup;Choi, Jaehoon;Kim, Sunghui;Cha, Jaehwan;Yoom, Hoonsik;Kim, Changwon
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • This work was performed to develop a model possible to predict the influent flow and influent components, which are one of main disturbances causing process problems at the operation of municipal wastewater treatment plant. In this study, artificial neural network (ANN) was used in order to develop a model that was able to predict the influent flow, $COD_{Mn}$, SS, TN 1 day-ahead, 2day-ahead and 3 day ahead. Multi-layer feed-forward back-propagation network was chosen as neural network type, and tanh-sigmoid function was used as activation function to transport signal at the neural network. And Levenberg-Marquart (LM) algorithm was used as learning algorithm to train neural network. Among 420 data sets except missing data, which were collected between 2005 and 2006 at field plant, 210 data sets were used for training, and other 210 data sets were used for validation. As result of it, ANN model for predicting the influent flow and components 1-3day ahead could be developed successfully. It is expected that this developed model can be practically used as follows: Detecting the fault related to effluent concentration that can be happened in the future by combining with other models to predict process performance in advance, and minimization of the process fault through the establishment of various control strategies based on the detection result.

Real-Time Forecasting of Flood Runoff Based on Neural Networks in Nakdong River Basin & Application to Flood Warning System (신경망을 이용한 낙동강 유역 하도유출 예측 및 홍수예경보 이용)

  • Yoon, Kang-Hoon;Seo, Bong-Cheol;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.145-154
    • /
    • 2004
  • The purpose of this study is to develop a real-time forecasting model in order to predict the flood runoff which has the nature of non-linearity and to verify applicability of neural network model for flood warning system. Developed model based on neural network, NRDFM(Neural River Discharge-Stage Forecasting Model) is applied to predict the flood discharge on Waekwann and Jindong stations in Nakdong river basin. As a result of flood forecasting on these two stations, it can be concluded that NRDFM-II is the best predictive model for real-time operation. In addition, the results of forecasting used on NRDFM-I and NRDFM-II model are not bad and these models showed sufficient probability for real-time flood forecasting. Consequently, it is expected that NRDFM in this study can be utilized as suitable model for real-time flood warning system and this model can perform flood control and management efficiently.

Terrain Feature Extraction and Classification using Contact Sensor Data (접촉식 센서 데이터를 이용한 지질 특성 추출 및 지질 분류)

  • Park, Byoung-Gon;Kim, Ja-Young;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.171-181
    • /
    • 2012
  • Outdoor mobile robots are faced with various terrain types having different characteristics. To run safely and carry out the mission, mobile robot should recognize terrain types, physical and geometric characteristics and so on. It is essential to control appropriate motion for each terrain characteristics. One way to determine the terrain types is to use non-contact sensor data such as vision and laser sensor. Another way is to use contact sensor data such as slope of body, vibration and current of motor that are reaction data from the ground to the tire. In this paper, we presented experimental results on terrain classification using contact sensor data. We made a mobile robot for collecting contact sensor data and collected data from four terrains we chose for experimental terrains. Through analysis of the collecting data, we suggested a new method of terrain feature extraction considering physical characteristics and confirmed that the proposed method can classify the four terrains that we chose for experimental terrains. We can also be confirmed that terrain feature extraction method using Fast Fourier Transform (FFT) typically used in previous studies and the proposed method have similar classification performance through back propagation learning algorithm. However, both methods differ in the amount of data including terrain feature information. So we defined an index determined by the amount of terrain feature information and classification error rate. And the index can evaluate classification efficiency. We compared the results of each method through the index. The comparison showed that our method is more efficient than the existing method.

Characteristics of the Plasma Source for Ground Ionosphere Simulation Surveyed by Disk-Type Langmuir Probe

  • Ryu, Kwangsun;Lee, Junchan;Kim, Songoo;Chung, Taejin;Shin, Goo-Hwan;Cha, Wonho;Min, Kyoungwook;Kim, Vitaly P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.343-352
    • /
    • 2017
  • A space plasma facility has been operated with a back-diffusion-type plasma source installed in a mid-sized vacuum chamber with a diameter of ~1.5 m located in Satellite Technology Research Center (SaTReC), Korea Advanced Institute of Science and Technology (KAIST). To generate plasma with a temperature and density similar to the ionospheric plasma, nickel wires coated with carbonate solution were used as filaments that emit thermal electrons, and the accelerated thermal electrons emitted from the heated wires collide with the neutral gas to form plasma inside the chamber. By using a disk-type Langmuir probe installed inside the vacuum chamber, the generation of plasma similar to the space environment was validated. The characteristics of the plasma according to the grid and plate anode voltages were investigated. The grid voltage of the plasma source is realized as a suitable parameter for manipulating the electron density, while the plate voltage is suitable for adjusting the electron temperature. A simple physical model based on the collision cross-section of electron impact on nitrogen molecule was established to explain the plasma generation mechanism.

Effective Road Area Extraction in Satellite Images Using Texture-Based BP Neural Network (텍스쳐 기반 BP 신경망을 이용한 위성영상의 도로영역 추출)

  • Xu, Zheng;Kim, Bo-Ram;Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • This paper proposes a road detection method using BP(Back-Propagation) neural network based on texture information of the each candidate road region segmented for satellite images. To segment the candidate road regions, the histogram-based binarization method proposed by N.Otsu is firstly performed and the neighboring regions surrounding road regions are then removed. And after extracting the principal color using the histogram of the segmented foreground, the candidate road regions are classified into the regions within ${\pm}25$ of the principal color. Finally, the road regions are segmented using BP neural network based on texture information of the candidate regions. The texture information in this paper is calculated using co-occurrence matrix and is used as an input data of the BP neural network. The proposed method is based on the fact that the road has the constant intensity and shape. The experiment demonstrated the validity of the proposed method and showed 90% detection accuracy for the various images.

  • PDF

Neural Network Modeling for Bread Baking Process (제빵 굽기 공정의 신경회로망 모형화)

  • Kim, Seung-Chan;Cho, Seong-In;Chun, Jae-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.525-531
    • /
    • 1995
  • Three quality factors of bread during baking process were measured to develop neural network models for bread baking process. Firstly, volume and browning changes during bread baking process were measured using image processing technique and temperature changes inside the bread during process were measured by K-type thermocouples. Relationships among them showed nonlinearity. Secondly, multilayer perception structure with error back propagation learning was used to construct neural network models. Three neural network models for volume, browning, and bread temperature were developed respectively. Developed models showed good performance with predictive error of 4.62% for volume and browning changes after 30 seconds, 7.38% for volume and browning changes after 2 minutes, and 1.09% for temperature change inside the bread respectively.

  • PDF

A Study on Rotating Object Classification using Deep Neural Networks (깊은신경망을 이용한 회전객체 분류 연구)

  • Lee, Yong-Kyu;Lee, Yill-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.425-430
    • /
    • 2015
  • This paper is a study to improve the classification efficiency of rotating objects by using deep neural networks to which a deep learning algorithm was applied. For the classification experiment of rotating objects, COIL-20 is used as data and total 3 types of classifiers are compared and analyzed. 3 types of classifiers used in the study include PCA classifier to derive a feature value while reducing the dimension of data by using Principal Component Analysis and classify by using euclidean distance, MLP classifier of the way of reducing the error energy by using error back-propagation algorithm and finally, deep learning applied DBN classifier of the way of increasing the probability of observing learning data through pre-training and reducing the error energy through fine-tuning. In order to identify the structure-specific error rate of the deep neural networks, the experiment is carried out while changing the number of hidden layers and number of hidden neurons. The classifier using DBN showed the lowest error rate. Its structure of deep neural networks with 2 hidden layers showed a high recognition rate by moving parameters to a location helpful for recognition.

A Study on the Design of Intelligent Classifier for Decision of Quality of Barrier Material (차단물질 특성 판정을 위한 지능형 분류기 설계에 관한 연구)

  • Kim, Sung-Ho;Yun, Seong-Ung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.230-235
    • /
    • 2008
  • Recently, LG chemical corporation developed new material called HYPERIER, which has an excellent barrier characteristic. It has many layers which are made of nano-composite within LDPE(Low-Density Poly Ethylene). In order to guarantee the quality of the final product from the production line, a certain test equipment is required to investigate the existence of layers inside the HYPERIER. In this work, ultrasonic sensor based test equipment for investigating the existence of inner layers is proposed. However, it is a tedious job for human operators to check the existence by just looking at the resounding waveform from ultrasonic sensor. Therefore, to enhance the performance of the ultrasonic test equipment, Fast Fourier Transform(FFT) and Principle Components Analysis(PCA) and Back-Propagation Neural Network(BPNN) are utilized which is used for classification of Quality. To verily the feasibility of the proposed scheme, some experiments are executed.

Prestack Reverse Time Depth Migration Using Monochromatic One-way Wave Equation (단일 주파수 일방향 파동방정식을 이용한 중합 전 역 시간 심도 구조보정)

  • Yoon Kwang Jin;Jang Mi Kyung;Suh Jung Hee;Shin Chang Soo;Yang Sung Jin;Ko Seung Won;Yoo Hae Soo;Jang Jae Kyung
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.70-75
    • /
    • 2000
  • In the seismic migration, Kirchhoff and reverse time migration are used in general. In the reverse time migration using wave equation, two-way and one-way wave equation are applied. The approach of one-way wave equation uses approximately computed downward continuation extrapolator, it need tess amounts of calculations and core memory in compared to that of two-way wave equation. In this paper, we applied one-way wave equation to pre-stack reverse time migration. In the frequency-space domain, forward propagation of source wavefield and back propagration of measured wavefield were executed by using monochromatic one-way wave equation, and zero-lag cross correlation of two wavefield resulted in the image of subsurface. We had implemented prestack migration on a massively parallel processors (MPP) CRAYT3E, and knew the algorithm studied here is efficiently applied to the prestck migration due to its suitability for parallelization.

  • PDF

A Design And Implementation Of Simple Neural Networks System In Turbo Pascal (단순신경회로망의 설계 및 구현)

  • 우원택
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2000.11a
    • /
    • pp.1.2-24
    • /
    • 2000
  • The field of neural networks has been a recent surge in activity as a result of progress in developments of efficient training algorithms. For this reason, and coupled with the widespread availability of powerful personal computer hardware for running simulations of networks, there is increasing focus on the potential benefits this field can offer. The neural network may be viewed as an advanced pattern recognition technique and can be applied in many areas such as financial time series forecasting, medical diagnostic expert system and etc.. The intention of this study is to build and implement one simple artificial neural networks hereinafter called ANN. For this purpose, some literature survey was undertaken to understand the structures and algorithms of ANN theoretically. Based on the review of theories about ANN, the system adopted 3-layer back propagation algorithms as its learning algorithm to simulate one case of medical diagnostic model. The adopted ANN algorithm was performed in PC by using turbo PASCAL and many input parameters such as the numbers of layers, the numbers of nodes, the number of cycles for learning, learning rate and momentum term. The system output more or less successful results which nearly agree with goals we assumed. However, the system has some limitations such as the simplicity of the programming structure and the range of parameters it can dealing with. But, this study is useful for understanding general algorithms and applications of ANN system and can be expanded for further refinement for more complex ANN algorithms.

  • PDF