• Title/Summary/Keyword: Back-Projection Algorithm

Search Result 81, Processing Time 0.019 seconds

Omnidirectional Camera Motion Estimation Using Projected Contours (사영 컨투어를 이용한 전방향 카메라의 움직임 추정 방법)

  • Hwang, Yong-Ho;Lee, Jae-Man;Hong, Hyun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.35-44
    • /
    • 2007
  • Since the omnidirectional camera system with a very large field of view could take many information about environment scene from few images, various researches for calibration and 3D reconstruction using omnidirectional image have been presented actively. Most of line segments of man-made objects we projected to the contours by using the omnidirectional camera model. Therefore, the corresponding contours among images sequences would be useful for computing the camera transformations including rotation and translation. This paper presents a novel two step minimization method to estimate the extrinsic parameters of the camera from the corresponding contours. In the first step, coarse camera parameters are estimated by minimizing an angular error function between epipolar planes and back-projected vectors from each corresponding point. Then we can compute the final parameters minimizing a distance error of the projected contours and the actual contours. Simulation results on the synthetic and real images demonstrated that our algorithm can achieve precise contour matching and camera motion estimation.

The Comparison of Image Quality and Quantitative Indices by Wide Beam Reconstruction Method and Filtered Back Projection Method in Tl-201 Myocardial Perfusion SPECT (Tl-201 심근관류 SPECT 검사에서 광대역 재구성(Wide Beam Reconstruction: WBR) 방법과 여과 후 역투영법에 따른 영상의 질 및 정량적 지표 값 비교)

  • Yoon, Soon-Sang;Nam, Ki-Pyo;Shim, Dong-Oh;Kim, Dong-Seok
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.122-127
    • /
    • 2010
  • Purpose: The Xpress3.$cardiac^{TM}$ which is a kind of wide beam reconstruction (WBR) method developed by UltraSPECT (Haifa, Israel) enables the acquisition of at quarter time while maintaining image quality. The purpose of this study is to investigate the usefulness of WBR method for decreasing scan times and to compare to it with filtered back projection (FBP), which is the method routinely used. Materials and Methods: Phantom and clinical studies were performed. The anthropomorphic torso phantom was made on an equality with counts from patient's body. The Tl-201 concentrations in the compartments were 74 kBq (2 ${\mu}Ci$)/cc in myocardium, 11.1 kBq (0.3 ${\mu}Ci$)/cc in soft tissue, and 2.59 kBq (0.07 ${\mu}Ci$)/cc in lung. The non-gated Tl-201 myocardial perfusion SPECT data were acquired with the phantom. The former study was scanned for 50 seconds per frame with FBP method, and the latter study was acquired for 13 seconds per frame with WBR method. Using the Xeleris ver. 2.0551, full width at half maximum (FWHM) and average image contrast were compared. In clinical studies, we analyzed the 30 patients who were examined by Tl-201 gated myocardial perfusion SPECT in department of nuclear medicine at Asan Medical Center from January to April 2010. The patients were imaged at full time (50 second per frame) with FBP algorithm and again quarter-time (13 second per frame) with the WBR algorithm. Using the 4D MSPECT (4DM), Quantitative Perfusion SPECT (QPS), and Quantitative Gated SPECT (QGS) software, the summed stress score (SSS), summed rest score (SRS), summed difference score, end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were analyzed for their correlations and statistical comparison by paired t-test. Results: As a result of the phantom study, the WBR method improved FWHM more than about 30% compared with FBP method (WBR data 5.47 mm, FBP data 7.07 mm). And the WBR method's average image contrast was also higher than FBP method's. However, in result of quantitative indices, SSS, SDS, SRS, EDV, ESV, EF, there were statistically significant differences from WBR and FBP(p<0.01). In the correlation of SSS, SDS, SRS, there were significant differences for WBR and FBP (0.18, 0.34, 0.08). But EDV, ESV, EF showed good correlation with WBR and FBP (0.88, 0.89, 0.71). Conclusion: From phantom study results, we confirmed that the WBR method reduces an acquisition time while improving an image quality compared with FBP method. However, we should consider significant differences in quantitative indices. And it needs to take an evaluation test to apply clinical study to find a cause of differences out between phantom and clinical results.

  • PDF

Optimal Non-Uniform Resampling Algorithm (최적 비정규 리샘플링 알고리즘)

  • Sin, Geon-Sik;Lee, Hak-Mu;Gang, Mun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.50-55
    • /
    • 2002
  • The standard approach of image resampling is to fit the original image with continuous model and resample the function at a desired rate. We used the B-spline function as the continuous model because it oscillates less than the others. The main purpose of this paper is the derivation of a nonuniform optimal resampling algorithm. To derive it, needing approximation can be computed in three steps: 1) determining the I-spline coefficients by matrix inverse process, 2) obtaining the transformed-spline coefficients by the optimal resampling algorithm derived from the orthogonal projection theorem, 3) converting of the result back into the signal domain by indirect B-spline transformation. With these methods, we can use B-spline in the non-uniform resampling, which is proved to be a good kernel in uniform resampling, and can also verify the applicability from our experiments.

Determination of Lateral Variations for Pn Velocity Structure Beneath the Korean Peninsula Using Seismic Tomography (지진토모그래피 (Seismic Tomography) 방법을 이용한 한반도 하부 Pn 속도 구조의 수평분포 결정)

  • Kim, So Gu;Lee, Seoung Kyu
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.625-635
    • /
    • 1997
  • A back projection algorithm is applied to 216 Pn travel time measurements to image lateral variations of compressional velocity in the uppermost mantle in the Korean Peninsula. We obtained an average P-velocity value for the uppermost mantle of $7.90{\pm}0.18km/sec$, and an average mantle P-velocity gradient of $5.3{\times}10^{-3}s^{-1}$ for the Korean Peninsula. The final 3-D velocity image in the uppermost mantle is characterized by a low-velocity (about $7.77{\pm}0.12km/sec$) region in the southeast area of the Korean peninsula, which is called 'Kyongsang Basin' and by high-velocity(${\geq}8.08km/sec$) region in the northern area of the Korean Peninsula(Hamkyong and Pyongan provinces). The crustal thicknesses are calculated for the 10 subregions. The crustal thickness of the northern part(${\geq}39^{\circ}N$) of the Korean Peninsula is 33.0-36.0 km, on the contrary, that of the southern part(< $39^{\circ}N$) is 30.7~33.7 km. The velocity image obtained in this study is somewhat consistent with previous S-P travel time studies and gravity studies.

  • PDF

Development of de-noised image reconstruction technique using Convolutional AutoEncoder for fast monitoring of fuel assemblies

  • Choi, Se Hwan;Choi, Hyun Joon;Min, Chul Hee;Chung, Young Hyun;Ahn, Jae Joon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.888-893
    • /
    • 2021
  • The International Atomic Energy Agency has developed a tomographic imaging system for accomplishing the total fuel rod-by-rod verification time of fuel assemblies within the order of 1-2 h, however, there are still limitations for some fuel types. The aim of this study is to develop a deep learning-based denoising process resulting in increasing the tomographic image acquisition speed of fuel assembly compared to the conventional techniques. Convolutional AutoEncoder (CAE) was employed for denoising the low-quality images reconstructed by filtered back-projection (FBP) algorithm. The image data set was constructed by the Monte Carlo method with the FBP and ground truth (GT) images for 511 patterns of missing fuel rods. The de-noising performance of the CAE model was evaluated by comparing the pixel-by-pixel subtracted images between the GT and FBP images and the GT and CAE images; the average differences of the pixel values for the sample image 1, 2, and 3 were 7.7%, 28.0% and 44.7% for the FBP images, and 0.5%, 1.4% and 1.9% for the predicted image, respectively. Even for the FBP images not discriminable the source patterns, the CAE model could successfully estimate the patterns similarly with the GT image.

Analyzing the Influence of Spatial Sampling Rate on Three-dimensional Temperature-field Reconstruction

  • Shenxiang Feng;Xiaojian Hao;Tong Wei;Xiaodong Huang;Pan Pei;Chenyang Xu
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.246-258
    • /
    • 2024
  • In aerospace and energy engineering, the reconstruction of three-dimensional (3D) temperature distributions is crucial. Traditional methods like algebraic iterative reconstruction and filtered back-projection depend on voxel division for resolution. Our algorithm, blending deep learning with computer graphics rendering, converts 2D projections into light rays for uniform sampling, using a fully connected neural network to depict the 3D temperature field. Although effective in capturing internal details, it demands multiple cameras for varied angle projections, increasing cost and computational needs. We assess the impact of camera number on reconstruction accuracy and efficiency, conducting butane-flame simulations with different camera setups (6 to 18 cameras). The results show improved accuracy with more cameras, with 12 cameras achieving optimal computational efficiency (1.263) and low error rates. Verification experiments with 9, 12, and 15 cameras, using thermocouples, confirm that the 12-camera setup as the best, balancing efficiency and accuracy. This offers a feasible, cost-effective solution for real-world applications like engine testing and environmental monitoring, improving accuracy and resource management in temperature measurement.

Evaluation of Image Quality and Radiation Dose for Filtered Back-Projection and Iterative Reconstruction Algorithm in Abdominal Computed Tomography Protocol (복부 CT 프로토콜에서 필터 보정 역투영법과 반복적 재구성기법에 따른 화질 및 선량에 관한 연구)

  • Oh, Jeong-Min;Seo, Hyeon-Ji;Kim, Yung-Kyoon;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.1065-1072
    • /
    • 2021
  • In Computed Tomography, abdominal examination showed the highest proportion of use, and effort of reducing the radiation dose is required. Recently introduced Iterative Reconstruction(IR) is repetitive reconstruction technique of Computed Tomography. SIEMENS' IR, ADMIRE and GE's IR, ASIR-V, were used in this examination. Noise, % Contrast, and High contrast resolution were measured by using ACR phantom for image quality evaluation. In addition, CTDIvol and DLP displayed in the CT device were used for dose evaluation. When FBP and IR were compared, stage 2 to stage 5 of ADMIRE and 10, 30, 50, 70, and 90% of ASIR-V were applied, noise could be reduced from a minimum of 0.46 to a maximum of 2.38 in ADMIRE compared to FBP, and noise from a minimum of 0.51 to a maximum of 2.5 in ASIR-V compared to FBP. Also, % Contrast and High contrast resolution of FBP and IR were no statistical difference. When IR was used for abdominal CT examination, the radiation dose of ADMIRE is reduced by 25.39% compared to the radiation dose of FBP. Also, the radiation dose of ASIR-V is reduced by 16.61% compared to the radiation dose of FBP. In conclusion, it is believed that if IR is applied during abdominal CT examination, the radiation dose can be reduced without deteriorating the image quality.

Recognition of characters on car number plate and best recognition ratio among their layers using Multi-layer Perceptron (다중퍼셉트론을 이용한 자동차 번호판의 최적 입출력 노드의 비율 결정에 관한 연구)

  • Lee, Eui-Chul;Lee, Wang-Heon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • The Car License Plate Recognition(: CLPR) is required in searching the hit-and-run car, measuring the traffic density, investigating the traffic accidents as well as in pursuing vehicle crimes according to the increasing in number of vehicles. The captured images on the real environment of the CLPR is contaminated not only by snow and rain, illumination changes, but also by the geometrical distortion due to the pose changes between camera and car at the moment of image capturing. We propose homographic transformation and intensity histogram of vertical image projection so as to transform the distorted input to the original image and cluster the character and number, respectively. Especially, in this paper, the Multilayer Perceptron Algorithm(: MLP) in the CLPR is used to not only recognize the charcters and car license plate, but also determine the optimized ratio among the number of input, hidden and output layers by the real experimental result.

The Evaluation of Reconstructed Images in 3D OSEM According to Iteration and Subset Number (3D OSEM 재구성 법에서 반복연산(Iteration) 횟수와 부분집합(Subset) 개수 변경에 따른 영상의 질 평가)

  • Kim, Dong-Seok;Kim, Seong-Hwan;Shim, Dong-Oh;Yoo, Hee-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • Purpose: Presently in the nuclear medicine field, the high-speed image reconstruction algorithm like the OSEM algorithm is widely used as the alternative of the filtered back projection method due to the rapid development and application of the digital computer. There is no to relate and if it applies the optimal parameter be clearly determined. In this research, the quality change of the Jaszczak phantom experiment and brain SPECT patient data according to the iteration times and subset number change try to be been put through and analyzed in 3D OSEM reconstruction method of applying 3D beam modeling. Materials and Methods: Patient data from August, 2010 studied and analyzed against 5 patients implementing the brain SPECT until september, 2010 in the nuclear medicine department of ASAN medical center. The phantom image used the mixed Jaszczak phantom equally and obtained the water and 99mTc (500 MBq) in the dual head gamma camera Symbia T2 of Siemens. When reconstructing each image altogether with patient data and phantom data, we changed iteration number as 1, 4, 8, 12, 24 and 30 times and subset number as 2, 4, 8, 16 and 32 times. We reconstructed in reconstructed each image, the variation coefficient for guessing about noise of images and image contrast, FWHM were produced and compared. Results: In patients and phantom experiment data, a contrast and spatial resolution of an image showed the tendency to increase linearly altogether according to the increment of the iteration times and subset number but the variation coefficient did not show the tendency to be improved according to the increase of two parameters. In the comparison according to the scan time, the image contrast and FWHM showed altogether the result of being linearly improved according to the iteration times and subset number increase in projection per 10, 20 and 30 second image but the variation coefficient did not show the tendency to be improved. Conclusion: The linear relationship of the image contrast improved in 3D OSEM reconstruction method image of applying 3D beam modeling through this experiment like the existing 1D and 2D OSEM reconfiguration method according to the iteration times and subset number increase could be confirmed. However, this is simple phantom experiment and the result of obtaining by the some patients limited range and the various variables can be existed. So for generalizing this based on this results of this experiment, there is the excessiveness and the evaluation about 3D OSEM reconfiguration method should be additionally made through experiments after this.

  • PDF

Ellipse-Stacking Methods for Image Reconstruction in Compton Cameras (컴프턴 카메라 영상재구성을 위한 타원 누적법)

  • Lee, Mi-No;Lee, Soo-Jin;Kim, Soo-Mee;Lee, Jae-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.520-529
    • /
    • 2007
  • An efficient method for implementing image reconstruction algorithms for Compton cameras is presented. Since Compton scattering formula establishes a cone surface from which the incident photon must have originated, it is crucial to implement a computationally efficient cone-surface integration method for image reconstruction. In this paper we assume that a cone is made up of a series of ellipses (or circles) stacked up one on top of the other. In order to reduce computational burden for tracing ellipses formed by the intersection of a cone and an image plane, we propose a new method using a series of imaginary planes perpendicular to the cone axis so that each plane contains a circle, not an ellipse. In this case the cone surface integral can be performed by simply accumulating the circles along the cone axis. To reduce the computational cost of tracing circles, only one of the circles in the cone is traced and the rest are determined by using simple trigonometric ratios. For our experiments, we used the three different schemes for tracing ellipses; (i) using the samples generated by the ellipse equation, (ii) using the fixed number of samples along a circle on the imaginary plane, and (iii) using the fixed sampling interval along a circle on the imaginary plane. We then compared performance of the above three methods by applying them to the two reconstruction algorithms - the simple back-projection method and the expectation-maximization algorithm. The experimental results demonstrate that our proposed methods (ii) and (iii) using imaginary planes significantly improve reconstruction accuracy as well as computational efficiency.