• Title/Summary/Keyword: Back surface field (BSF)

Search Result 26, Processing Time 0.028 seconds

Analysis of the Formation of Rear Contact for Monocrystalline Silicon Solar Cells (단결정 실리콘 태양전지의 후면 전극형성에 관한 비교분석)

  • Kwon, Hyuk-Yong;Lee, Jae-Doo;Kim, Min-Jeong;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.571-574
    • /
    • 2010
  • Surface recombination loss should be reduced for high efficiency of solar cells. To reduce this loss, the BSF (back surface field) is used. The BSF on the back of the p-type wafer forms a p+layer, which prevents the activity of electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. Therefore, the open-circuit-voltage (Voc) and fill factor (FF) of solar cells are increased. This paper investigates the formation of the rear contact process by comparing aluminum-paste (Al-paste) with pure aluminum-metal(99.9%). Under the vacuum evaporation process, pure aluminum-metal(99.9%) provides high conductivity and low contact resistance of $4.2\;m{\Omega}cm$, but It is difficult to apply the standard industrial process to it because high vacuum is needed, and it's more expensive than the commercial equipment. On the other hand, using the Al-paste process by screen printing is simple for the formation of metal contact, and it is possible to produce the standard industrial process. However, Al-paste used in screen printing is lower than the conductivity of pure aluminum-metal(99.9) because of its mass glass frit. In this study, contact resistances were measured by a 4-point probe. The contact resistance of pure aluminum-metal was $4.2\;m{\Omega}cm$ and that of Al-paste was $35.69\;m{\Omega}cm$. Then the rear contact was analyzed by scanning electron microscope (SEM).

An optimal design for the local back contact pattern of crystalline silicon solar cells by using PC1D simulation (PC1D Simulation을 통한 결정질 실리콘 태양전지의 국부적 후면 전극 최적화 설계)

  • Oh, Sungkeun;Lim, Chung-Hyun;Cho, Younghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.43.1-43.1
    • /
    • 2010
  • In the crystalline silicon solar cells, the full area aluminum_back surface field(BSF) is routinely achieved through the screen-printing of aluminum paste and rapid firing. It is widely used in the industrial solar cell because of the simple and cost-effective process to suppress the overall recombination at the back surface. However, it still has limitations such as the relatively higher recombination rate and the low-to-moderate reflectance. In addition, it is difficult to apply it to thinner substrate due to wafer bowing. In the recent years, the dielectric back-passivated cell with local back contacts has been developed and implemented to overcome its disadvantages. Although it is successful to gain a lower value of surface recombination velocity(SRV), the series resistance($R_{series}$) becomes even more important than the conventional solar cell. That is, it is a trade off relationship between the SRV and the $R_{series}$ as a function of the contact size, the contact spacing and the geometry of the opening. Therefore it is essential to find the best compromise between them for the high efficiency solar cell. We have investigated the optimal design for the local back contact by using PC1D simulation.

  • PDF

A effect of the efficiency for the back contact silicon solar cell with the surface texturing depth and gap (표면 텍스쳐링 깊이와 간격에 따른 후면 전극 실리콘 태양전지 효율에 미치는 영향)

  • Jang, Wang-Geun;Jang, Yun-Seok;Park, Jung-Il;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1380-1381
    • /
    • 2011
  • 본 논문에서는 SILVACO 사의 ATHENA와 ATLAS를 이용하여 후면 전극 실리콘 태양전지 (back contact silicon solar cell)의 전면 텍스쳐링 (texturing) 깊이 (depth)와 텍스쳐링 간격 (gap)에 따른 태양전지 효율(efficiency)에 미치는 영향을 분석하였다. 제안한 후면 전극 실리콘 태양전지는 (100) silicon wafer(n-type, $6{\times}10^{15}\;cm^{-3}$)을 기반으로 전면부에 텍스쳐링을, 후면부에 BSF(back surface field, $1{\times}10^{20}\;cm^{-3}$)와 에미터(emitter, $8.5{\times}10^{19}\;cm^{-3}$)를 구성하고, 셀간 피치를 1250 ${\mu}m$, BSF와 에미터의 간격을 25 ${\mu}m$으로 한 구조이다. 텍스쳐링 간격이 없이 텍스쳐링 깊이를 0 ${\mu}m$에서 150 ${\mu}m$으로 증가시켜 분석한 결과, 텍스쳐링 깊이가 증가할수록 효율이 23.90%에서 25.79%로 증가하였다. 텍스쳐링 간격을 1 ${\mu}m$에서 100 ${\mu}m$으로 증가시켜 분석한 결과, 텍스쳐링 깊이와 상관없이 텍스쳐링 간격이 증가할수록 후면 전극 실리콘 태양전지의 효율이 감소하였다. 텍스쳐링 유무에 따라 후면 전극 태양전지의 외부양자효율의 차이를 보였고 텍스쳐링이 있을 때 외부양자효율이 보다 높은 값을 얻었다.

  • PDF

Comparison of light-induced degradation and regeneration in P-type monocrystalline full aluminum back surface field and passivated emitter rear cells

  • Cho, Eunhwan;Rohatgi, Ajeet;Ok, Young-Woo
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1600-1604
    • /
    • 2018
  • This paper reports on a systematic and quantitative assessment of light induced degradation (LID) and regeneration in full Al-BSF and passivated emitter rear contact cells (PERC) along with the fundamental understanding of the difference between the two. After LID, PERC cells showed a much greater loss in cell efficiency than full Al-BSF cells (~0.9% vs ~0.6%) because the degradation in bulk lifetime also erodes the benefit of superior BSRV in PERC cells. Three main regeneration conditions involving the combination of heat and light ($75^{\circ}C/1\;Sun/48h$, $130^{\circ}C/2\;Suns/1.5h$ and $200^{\circ}C/3\;Suns/30s$) were implemented to eliminate LID loss due to BO defects. Low temperature/long time ($75^{\circ}C/48h$) and high temperature/short time ($200^{\circ}C/30s$) regeneration process was unable to reach 100% stabilization. The intermediate temperature/time ($130^{\circ}C/1.5h$) generation achieved nearly full recovery and stabilization (over 99%) for both full Al-BSF and PERC cells. We discussed the effect of temperature, time and suns in regeneration mechanism for two cells.

An Analysis on rear contact for crystalline silicon solar cell (결정질 실리콘 태양전지에 적용하기 위한 후면전극 형성에 관한 연구)

  • Kwon, Hyukyong;Lee, Jaedoo;Kim, Minjung;Lee, Soohong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.91.1-91.1
    • /
    • 2010
  • There are some methods for increasing efficiency of crystalline silicon solar cells. Among them, It is important to reduce the recombination loss of surface for high efficiency. In order to reduce recombination loss is a way to use the BSF(Back Surface Field). The BSF on the back of the p-type wafer forms a p+layer. so, it is prevented to act electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. therefore, open-circuit-voltage and Fill factor(FF) of solar cells are increased. This paper investigates the formation of rear contact process comparing Aluminum-paste(Al-paste) with Aluminum-Metal(99.9%). It is shown that the Aluminum-Metal provides high conductivity and low contact resistance of $21.35m{\Omega}cm$ using the Vacuum evaporation process but, it is difficult to apply the standard industrial process because high Vacuum is needed and it costs a tremendous amount more than Al-paste. On the other hand, using the Al-paste process by screen printing is simple for formation of metal contact and it is possible to produce the standard industrial process. however, it is lower than Aluminum-Metal(99.9) of conductivity because of including mass glass frit. In this study, contact resistances were measured by 4-point prove. each of contact resistances is $21.35m{\Omega}cm$ of Aluminum-Metal and $0.69m{\Omega}cm$ of Al-paste. and then rear contact have been analyzed by Scanning Electron Microscopy(SEM).

  • PDF

Efficiency Improvement of $N^+NPP^+$ Si Solar Cell with High Low Junction Emitter Structure (고저 접합 에미터 구조를 갖는 $N^+NPP^+$ Si 태양전지의 효율 개선)

  • 장지근;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.1
    • /
    • pp.62-70
    • /
    • 1984
  • N+NPP+ HLEBSF (high low emitter back surface field) solar cells which have N+N high low junction in the emitter as well as N+PP+ BSF cells were designed and fabricated by using <111> oriented P type Si wafers with the resistivity of 10$\Omega$/$\textrm{cm}^2$ and the thickness of 13-15 mil. Physical parameters (impurity concentration, thickness) at each region of N+PP+ and N+NPP+ cell were made equally through same masks and simultaneous process except N region of HLEBSF cell to investigate the high low emitter junction effect for efficiency improvement. Under the light intensity of 100 mW/$\textrm{cm}^2$, total area (active area) conversion efficiency were typically 10.94% (12.16%) for N+PP+ BSF cells and 12.07% (13.41%) for N+N PP+ cells. Efficiency improvement of N+NPP+ cell which has high low emitter Junction structure is resulted from the suppression of emitter recombination current and the increasement of open circuit voltage (Voc) and short circuit current (Ish) by removing heavy doping effects occurring in N+ emitter region.

  • PDF

Bow Reduction in Thin Crystalline Silicon Solar Cell with Control of Rear Aluminum Layer Thickness (박형 결정질 실리콘 태양전지에서의 휨현상 감소를 위한 알루미늄층 두께 조절)

  • Baek, Tae-Hyeon;Hong, Ji-Hwa;Lim, Kee-Joe;Kang, Gi-Hwan;Kang, Min-Gu;Song, Hee-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.194-198
    • /
    • 2012
  • Crystalline silicon solar cell remains the major player in the photovoltaic marketplace with 80% of the market, despite the development of various thin film technologies. Silicon's excellent efficiency, stability, material abundance and low toxicity have helped to maintain its position of dominance. However, the cost of silicon materials remains a major barrier to reducing the cost of silicon photovoltaics. Using the crystalline silicon wafer with thinner thickness is the promising way for cost and material reduction in the solar cell production. However, the thinner the silicon wafer is, the worse bow phenomenon is induced. The bow phenomenon is observed when two or more layers of materials with different temperature expansion coefficiencies are in contact, in this case silicon and aluminum. In this paper, the solar cells were fabricated with different thicknesses of Al layer in order to reduce the bow phenomenon. With less amount of paste applications, we observed that the bow could be reduced by up to 40% of the largest value with 120 micron thickness of the wafer even though the conversion efficiency decrease by 0.5% occurred. Since the bowed wafers lead to unacceptable yield losses during the module construction, the reduction of bow is indispensable on thin crystalline silicon solar cell. In this work, we have studied on the counterbalance between the bow and conversion efficiency and also suggest the formation of enough back surface field (BSF) with thinner Al layer application.

A study on the formation of local back surface field using Rapid Thermal Process (Rapid Thermal Process를 이용한 실리콘 태양전지의 국부적 후면 전극 최적화)

  • Bae, Soohyun;Park, Sungeun;Kim, Young Do;Park, Hyomin;Kim, Soo Min;Kim, Seongtak;Kim, Hyunho;Tark, Sung Ju;Kim, Dongwhan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.121.1-121.1
    • /
    • 2011
  • 현재 상용화되고 있는 단결정 실리콘 태양전지는 알루미늄 페이스트를 이용하여 후면의 전 영역에 전계를 형성한다. 최근에는 고효율을 얻기 위하여 후면에 패시베이션 효과와 장파장에 대한 반사도를 증가 시키는 SiNx막을 증착 후, 국부적으로 전계를 형성하는 국부 후면 전극(Local back surface field)기술이 연구되고 있다. 본 연구에서는 전면만 텍스쳐 된 단결정 실리콘 웨이퍼를 이용하였다. Plasma Enhanced Chemical Vapor Deposition(PECVD)를 이용하여 전,후면에 SiNx를 증착 하였고 후면의 국부적인 전극 패턴 형성을 위하여 SiNx 식각용 페이스트를 사용한 스크린 프린팅 기술을 이용하였다. 스크린 프린팅을 이용하여 패턴이 형성된 후면에 알루미늄을 인쇄 한 후 Rapid Thermal Process(RTP)를 이용하여 소성 공정 조건을 변화시켰다. 소성 조건 동안 형성되는 후면 전계층은 peak 온도와 승온속도, 냉각 속도에 따라 형상이나 특성이 변화하기 때문에 소성 조건을 변화시키며 국부적 후면 전계 형성의 최적화에 관한 연구를 수행하였다. 패이스트를 이용하여 SiNx를 식각 후 광학 현미경(Optical Microscopy)을 사용하여 SiNx의 식각 유무를 살펴보았고, RTP로 형성된 국부 전계층의 형성 두께, 주변 부분의 형상을 살피기 위해 도핑 영역을 혼합수용액으로 식각하여 주사 전자 현미경(SEM)을 이용하여 관찰 하였다. 또한 후면의 특성을 살펴보기 위해 분광 광도계(UV/VIS/NIR Spectrophotometer)를 사용하여 후면 SiNx층의 유무에 따른 반사도를 비교, 측정 하였다.

  • PDF

A Study on ALD $Al_2O_3$ Films for Rear Surface Passivation of Crystalline Silicon Solar Cells (결정질 태양전지의 후면 패시베이션을 위한 ALD $Al_2O_3$ 막 연구)

  • Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.57-61
    • /
    • 2011
  • To develop high efficiency crystalline solar cells, the rear surface passivation is very important. In this paper, $Al_2O_3$ films deposited by thermal ALD(atomic layer deposition) method were studied for rear surface passivation of crystalline solar cells and their passivation properties were evaluated. After the deposition of $Al_2O_3$ films on p-type Si wafers, the lifetime was increased very much due to the reduction of interface state density and the field effects of the negative fixed charge in the films. Also, optimum annealing condition and effects of SiNx capping layer were investigated. The best lifetime was obtained when the films were annealed at $400^{\circ}C$ for 15min. And the lifetime degradation of the $Al_2O_3$ films with SiNx capping layers was improved compared to those without the capping layers.

Rear Surface Passivation with Al2O3 Layer by Reactive Magnetron Sputtering for High-Efficiency Silicon Solar Cell

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Jeon, Jun-Hong;Choi, Jin-Young;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.211-211
    • /
    • 2012
  • The electrical loss of the photo-generated carriers is dominated by the recombination at the metal- semiconductor interface. In order to enhance the performance of the solar cells, many studies have been performed on the surface treatment with passivation layer like SiN, SiO2, Al2O3, and a-Si:H. In this work, Al2O3 thin films were investigated to reduce recombination at surface. The Al2O3 thin films have two advantages, such as good passivation properties and back surface field (BSF) effect at rear surface. It is usually deposited by atomic layer deposition (ALD) technique. However, ALD process is a very expensive process and it has rather low deposition rate. In this study, the ICP-assisted reactive magnetron sputtering method was used to deposit Al2O3 thin films. For optimization of the properties of the Al2O3 thin film, various fabrication conditions were controlled, such as ICP RF power, substrate bias voltage and deposition temperature, and argon to oxygen ratio. Chemical states and atomic concentration ratio were analyzed by x-ray photoelectron spectroscopy (XPS). In order to investigate the electrical properties, Al/(Al2O3 or SiO2,/Al2O3)/Si (MIS) devices were fabricated and characterized using the C-V measurement technique (HP 4284A). The detailed characteristics of the Al2O3 passivation thin films manufactured by ICP-assisted reactive magnetron sputtering technique will be shown and discussed.

  • PDF