• Title/Summary/Keyword: Back crossing

Search Result 63, Processing Time 0.039 seconds

The Change of Muscle Activities of Trunk Muscles during Various Leg-Crossing Positions in Low Back Pain Patients (다양한 다리 꼬기 자세가 요통환자의 체간근 활성도에 미치는 영향)

  • Kim, Tae-Ho;Seo, Hyun-Kyu;Gong, Won-Tae
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.5
    • /
    • pp.1-10
    • /
    • 2007
  • Purpose: Leg-crossing sitting is very common for men and woman. No solid evidence exists for either a beneficial or a detrimental effect of this posture. This study investigated the change of activities of trunk muscles between the normal group and the low back pain group during various leg-crossing positions. Methods: The subjects were consisted of 10 subjects who don't have low back pain and 10 subjects who have low back pain. In this study, we used electromyography(EMG) to evaluate the activities of both the trunk muscles (rectus abdominis, external oblique, internal oblique, and multifidus) during various leg-crossing positions (up-right, leg-crossing, tailor-crossing, and ankle-crossing). We analyzed the data by using repeated one way ANOVA. Results: In normal group, there were increased in EMG activities of trunk muscles, but no significant differences during leg-crossing positions. In back pain group, there were increased in EMG activities of right external oblique, left. internal oblique, and both multifidus muscles in leg-crossing and tailor-crossing position, but no significant differences during leg-crossing positions. There was no significant difference of muscle activity of trunk muscles between the back pain group and the normal group. Conclusion: We suggest that low back pain people who have weak muscles of rectus abdominis, external and internal oblique are often experienced in leg-crossing posture than normal. To compensate this unstability of trunk, leg-crossing posture is substituted passive structure for activities of active muscle.

  • PDF

Expression in Successive Generations of bar Gene Introduced in Petunia (Petunia에 도입된 bar Gene의 세대진전에 따른 발현 양상)

  • Ha, Young-Min;Park, Sang-Mi;Kim, Zhoo-Hyeon
    • Journal of Plant Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.261-266
    • /
    • 2004
  • This experiment was carried out to confirm the stability of bar gene introduced into petunia plant through Agrobacterium-mediated transformation, in successive generation, or after crossing or back-crossing. Some of different 25 transgenic plants were used in crossing and back-crossing to wild type, or repeated-selfing to T$_4$ generation. On the processing of experiment, it was found that some lines lost their resistant ability to herbicide basta, or showed non-Mendelian segregation mode: produced much more susceptible segregants than resistant plants. Even though there are exceptional cases, which was off from expected, the genetic stability of bar gene introduced could be confirmed strongly, because in almost case, the segregation of resistant and susceptible plants to basta was done under Mendelian-law according to single gene dominant model.

Three Color Algorithm for Two-Layer Printed Circuit Boards Layout with Minimum Via

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2016
  • The printed circuit board (PCB) can be used only 2 layers of front and back. Therefore, the wiring line segments are located in 2 layers without crossing each other. In this case, the line segment can be appear in both layers and this line segment is to resolve the crossing problem go through the via. The via minimization problem (VMP) has minimum number of via in layout design problem. The VMP is classified by NP-complete because of the polynomial time algorithm to solve the optimal solution has been unknown yet. This paper suggests polynomial time algorithm that can be solve the optimal solution of VMP. This algorithm transforms n-line segments into vertices, and p-crossing into edges of a graph. Then this graph is partitioned into 3-coloring sets of each vertex in each set independent each other. For 3-coloring sets $C_i$, (i=1,2,3), the $C_1$ is assigned to front F, $C_2$ is back B, and $C_3$ is B-F and connected with via. For the various experimental data, though this algorithm can be require O(np) polynomial time, we obtain the optimal solution for all of data.

A Simplified Analysis Approach on the Rotor Position Detection Error in Sensorless Interior Permanent Magnet Brushless DC Motor Drives (센서리스 매입형 영구자석 브러시리스 직류전동기 구동장치에서 단순화된 회전자 위치검출 오차 분석 방법)

  • Lee, Kwang-Woon;Park, Tae-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.449-452
    • /
    • 2016
  • This paper presents a simplified analysis on the rotor position detection error in sensorless interior permanent magnet brushless DC motor (BLDCM) drives, wherein terminal voltage sensing based on the back-electromotive force (back-EMF) zero-crossing point detecting circuitry is employed. The effect of a rotor saliency on the back-EMF's zero-crossing point detection is analyzed using the extended EMF-based voltage equation of the interior permanent BLDCM in a stationary reference frame, and thus the overall analysis is considerably simplified compared to the conventional one. Simulation results are provided to verify the effectiveness of the proposed method.

Design of Sensorless BLDC Motor Driver Using Variable Voltage and Back-EMF Differential Line (가변 전압기와 역기전력 차동방식을 이용한 센서리스 BLDC 전동기 드라이버 설계)

  • Lee, Myoungseok;Kong, Kyoungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.910-916
    • /
    • 2015
  • A sensorless motor control scheme with conventional back-Electro Motive Force (EMF) sensing based on zero crossing point (ZCP) detection has been widely used in various applications. However, there are several problems with the conventional method for effectively driving sensorless brushless motors. For example, a phase mismatch of 30 degrees occurs between the ZCP and commutation time. Additionally, most of the motor speed/current controls are achieved based on a pulse width modulation (PWM) method, which generates significant noise that distracts the back-EMF sensing. Due to the PWM switching, the ZCP is not deterministic, and thus the efficiency of the motor is reduced because the phase transition points become uncertain. Moreover, the motor driving performance is degraded at a low speed range due to the effect of PWM noise. To solve these problems, an improved back-EMF detection method based on a differential line method is proposed in this paper. In addition, the proposed sensorless BLDC driver addresses the problems by using a variable voltage driver generated from a buck converter. The variable voltage driver does not generate the PWM switching noise. Consequently, the proposed sensorless motor driver improves 1) the signal-to-noise ratio of back-EMF, 2) the operation range of a BLDC motor, and 3) the torque characteristics. The proposed sensorless motor driver is verified through simulations and experiments.

EVALUATION OF PEDESTRIAN SIGNAL TIMING AT SIGNALIZED INTERSECTION (신호횡단보도 보행등 녹색신호시간에 관한 연구)

  • 장덕명;박종주
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.1
    • /
    • pp.55-73
    • /
    • 1994
  • The objective of this research is to evaluate the pedestrian signal time involving green and flashing green times. The minimum pedestrian green indication should give time for pedestrian to start crossing safely, and the flashing green indication should give time to complete the crossing. An average pedestrian crossing speed of 1.1(m/s) was estimated by analyzing the field data which was slower than the 1.2(m/s) currently used. Furthermore, the study proposed that design speed for the flashing green time should be slow speed for considerations pedestrian safety, not the average speed. The 0.78-1.01(m/s) of pedestrian speed was estimated at the elementary school areas that indicated 0.2(m/s) slower than the other areas. The pedestrian starting time (perception/reaction time) and time headway from front to back of herd was estimated to determine minimum pedestrian green time. the pedestrian starting time was estimated to determine minimum pedestrian green time. The pedestrian starting time was ranged 2.52-4.29 seconds. The time interval between the pedestrian rows was found to be 1.25-1.86 seconds, which declines as the pedestrian rows increases, The equation to calculate the pedestrian signal, which declines as the pedestrian rows increases. The equation to calculate the pedestrian signal time is proposed using the pedestrian starting time, the time interval between the pedestrian rows, and pedestrian crossing speed given area types (commercial, business, mixed, and elementary school areas), number of both-directional pedestrians for a cycle, crosswalk length and width.

  • PDF

Sensorless driving strategy of Single-Phase Hybrid SRM basing on Back-EMF detection (역기전력을 이용한 단상 하이브리드 SRM의 위치 추정 방법)

  • Tang, Ying;Lee, Donghee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.521-522
    • /
    • 2016
  • This paper presents a novel scheme to estimate the rotor position of a single-phase hybrid switched reluctance motor (HSRM). The proposed method uses the differential of back-EMF within a position region to estimate rotor position. By detecting the crossing-zero signal of back-EMF differential value, the minimum position of back-EMF corresponding to an absolute rotor position can be captured and used for position estimation four times in every mechanical rotation. In this way, a sensorless operation with adjustable turn on/off angle can be achieved without substantial computation. For the starting, two current comparators are adopted. The experimental verification using a prototype drive system is provided to demonstrate the viability of the proposed sensorless scheme.

  • PDF

Synchronous Carrier-based Pulse Width Modulation Switching Method for Vienna Rectifier

  • Park, Jin-Hyuk;Yang, SongHee;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.604-614
    • /
    • 2018
  • This paper proposes a synchronous switching technique for a Vienna rectifier that uses carrier-based pulse width modulation (CB-PWM). A three-phase Vienna rectifier, similar to a three-level T-type converter with three back-to-back switches, is used as a PWM rectifier. Conventional CB-PWM requires six independent gate signals to operate back-to-back switches. When internal switches are operated synchronously, only three independent gate signals are required, which simplifies the construction of gate driver circuits. However, with this method, total harmonic distortion of the input current is higher than that with conventional CB-PWM switching. A reactive current injection technique is proposed to improve current distortion. The performance of the proposed synchronous switching method and the effectiveness of the reactive current injection technique are verified using simulations and experiments performed with a set of Vienna rectifiers rated at 5 kW.

Comparison of Performance of Turnout for Wheel Back Side Pressure (배면횡압에 대한 분기기의 성능 비교)

  • Moon Kyeong-Ho;Jeong Woo-Jin;Mok Jai-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.830-835
    • /
    • 2004
  • In railway systems, the performance of turnout is one of the most important factors to improve the train's speed. Standard turnout, in which one track is split in main track side and turnout side. Because the main track side remains linear, speed restriction can be alleviated while train pass the main track side. The factors of speed restriction in main track side are strength of crossing and tongue rail, wheel back side pressure of guard rail and wing rail. In this study, we measured wheel back side pressure of guard rail to compare improved turnout with present turnout. In result, the wheel back side pressure of improved turnout was lower than present turnout, so its performance was proved.

  • PDF

A Study on the Stable Sensorless Control of BLDC Motor Inside Auxiliary Air Compressor

  • Kim, In-Gun;Hong, Hyun-Seok;Go, Sung-Chul;Oh, Ye-Jun;Joo, Kyoung-Jin;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.466-471
    • /
    • 2017
  • Pantograph must be correctly attached to catenary to continuously supply stable power to railway vehicle, and the device used here is Auxiliary Air Compressor (ACM). The existing ACM used the DC motor that included commutator and brush. Since maintenance and repair by mechanical friction are essential for the DC motor, BLDC motor studies have been conducted to improve this. A three-phase BLDC motor does $120^{\circ}$ two-phase commutation through hall sensors in general. However, since hall sensor is vulnerable to heat and can run only when all three sensors work normally, sensorless control method has been studied to solve this. Using back EMF Zero Crossing Point (ZCP) detection method, this paper will introduce a stable switching sensing method that has a non-commutation area in a low speed zone.