• Title/Summary/Keyword: Back contact solar cell

Search Result 81, Processing Time 0.032 seconds

An optimal design for the local back contact pattern of crystalline silicon solar cells by using PC1D simulation (PC1D Simulation을 통한 결정질 실리콘 태양전지의 국부적 후면 전극 최적화 설계)

  • Oh, Sungkeun;Lim, Chung-Hyun;Cho, Younghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.43.1-43.1
    • /
    • 2010
  • In the crystalline silicon solar cells, the full area aluminum_back surface field(BSF) is routinely achieved through the screen-printing of aluminum paste and rapid firing. It is widely used in the industrial solar cell because of the simple and cost-effective process to suppress the overall recombination at the back surface. However, it still has limitations such as the relatively higher recombination rate and the low-to-moderate reflectance. In addition, it is difficult to apply it to thinner substrate due to wafer bowing. In the recent years, the dielectric back-passivated cell with local back contacts has been developed and implemented to overcome its disadvantages. Although it is successful to gain a lower value of surface recombination velocity(SRV), the series resistance($R_{series}$) becomes even more important than the conventional solar cell. That is, it is a trade off relationship between the SRV and the $R_{series}$ as a function of the contact size, the contact spacing and the geometry of the opening. Therefore it is essential to find the best compromise between them for the high efficiency solar cell. We have investigated the optimal design for the local back contact by using PC1D simulation.

  • PDF

Application of Buffer Layers for Back Contact in CdTe Thin Film Solar Cells

  • Chun, Seungju;Kim, Soo Min;Lee, Seunghun;Yang, Gwangseok;Kim, Jihyun;Kim, Donghwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.318.2-318.2
    • /
    • 2014
  • The high contact resistance is still one of the major issues to be resolved in CdS/CdTe thin film solar cells. CdTe/Metal Schottky contact induced a high contact resistance in CdS/CdTe solar cells. It has been reported that the work function of CdTe thin film is more than 5.7 eV. There has not been a suitable back contact metal, because CdTe thin film has a high work function. In a few decades, some buffer layer was reported to improve a back contact problem. Buffer layers which are Te, $Sb_2Te_3$, $Cu_2Te$, ZnTe:Cu and so on was inserted between CdTe and metal electrode. A formed buffer layers made a tunnel junction. Hole carriers which was excited in CdTe film by light absorption was transported from CdTe to back metal electrode. In this report, we reported the variation of solar cell performance with different buffer layer at the back contact of CdTe thin film solar cell.

  • PDF

Advances in High Efficiency Back Contact Back Junction Solar Cells

  • Balaji, Nagarajan;Park, Cheolmin;Raja, Jayapal;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • In the past few decade's researchers, scientists, engineers of photovoltaic (PV) industry are working towards low cost high efficiency Si solar cells. Over the last decade the interest in back contact solar cell has been acquiring as well as a gradual introduction to industrial applications is increasing. As an alternative to conventional solar cells with a front and rear contact, the back-contact cells has remained a research topic. The aim of this work is to present a comprehensive summary of results incurred in the back contact back junction solar cells such as interdigitated back-contact (IBC), emitter wrap-through (EWT) and metallization wrap-through (MWT) over the years.

Development of Manufacturing Processes of Crystalline Silicon Back Contact Solar Cells (후면전극형 실리콘 태양전지 제조기술 개발)

  • Kim Daewon;Lee Keonyoung;Cho Eunchel;Park Sangwook;Moon Insik;Lee Kyuyeol;Yu Jaehee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.89-93
    • /
    • 2005
  • A rear contact solar cell has a potential merit of efficiency improvement by a low shading loss in front surface. a simplified module assembly. and a higher packing density. Among the rear contact solar cells. MWT. metallizationl wrap through MWT solar cells that have the bus bars on the back side and the front side metallization is connected to the back through metal filled laser fired holes in the silicon wafer. This approach has the advantages of a much more uniform appearance. The first fabrication of MWT using a multicrystalline silicon modules in our group showed $12.28\%$ on $125mm{\times}125mm$ active area.

  • PDF

The application of Nano-paste for high efficiency back contact Solar cell (고효율 후면 전극형 태양전지를 위한 나노 Paste의 적용에 대한 연구)

  • Nam, Donghun;Lee, Kyuil;Park, Yonghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.53.2-53.2
    • /
    • 2010
  • In this study, we focused on our specialized electrode process for Si back-contact crystalline solar cell. It is different from other well-known back-contact cell process for thermal aspect and specialized process. In general, aluminum makes ohmic contact to the Si wafer and acts as a back surface reflector. And, silver is used for low series resistance metal grid lines. Aluminum was sputtered onto back side of wafer. Next, silver is directly patterned on the wafer by screen printing. The sputtered aluminum was removed by wet etching process after rear silver electrode was formed. In this process, the silver paste must have good printability, electrical property and adhesion strength, before and after the aluminum etching process. Silver paste also needs low temperature firing characteristics to reduce the thermal budget. So it was seriously collected by the products of several company of regarding low temperature firing (below $250^{\circ}C$) and aluminum etching endurance. First of all, silver pastes for etching selectivity were selected to evaluate as low temperature firing condition, electrical properties and adhesive strength. Using the nano- and micron-sized silver paste, so called hybrid type, made low temperature firing. So we could minimize the thermal budget in metallization process. Also the adhesion property greatly depended on the composition of paste, especially added resin and inorganic additives. In this paper, we will show that the metallization process of back-contact solar cell was realized as optimized nano-paste characteristics.

  • PDF

A effect of the back contact silicon solar cell with surface texturing size and density (표면 텍스쳐링 크기와 밀도가 후면 전극 실리콘 태양전지에 미치는 영향)

  • Jang, Wanggeun;Jang, Yunseok;Pak, Jungho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.112.1-112.1
    • /
    • 2011
  • The back contact solar cell (BCSC) has several advantages compared to the conventional solar cell since it can reduce grid shadowing loss and contact resistance between the electrode and the silicon substrate. This paper presents the effect of the surface texturing of the silicon BCSC by varying the texturing depth or the texturing gap in the commercially available simulation software, ATHENA and ATLAS of the company SILVACO. The texturing depth was varied from $5{\mu}m$ to $150{\mu}m$ and the texturing gap was varied from $1{\mu}m$ to $100{\mu}m$ in the simulation. The resulting efficiency of the silicon BCSC was evaluated depending on the texturing condition. The quantum efficiency and the I-V curve of the designed silicon BCSC was also obtained for the analysis since they are closely related with the solar cell efficiency. Other parameters of the simulated silicon BCSC are as follows. The substrate was an n-type silicon, which was doped with phosphorous at $6{\times}10^{15}cm^{-3}$, and its thickness was $180{\mu}m$, a typical thickness of commercial solar cell substrate thickness. The back surface field (BSF) was $1{\times}10^{20}\;cm^{-3}$ and the doping concentration of a boron doped emitter was $8.5{\times}10^{19}\;cm^{-3}$. The pitch of the silicon BCSC was $1250{\mu}m$ and the anti-reflection coating (ARC) SiN thickness was $0.079{\mu}m$. It was assumed that the texturing was anisotropic etching of crystalline silicon, resulting in texturing angle of 54.7 degrees. The best efficiency was 25.6264% when texturing depth was $50{\mu}m$ with zero texturing gap in case of low texturing depth (< $100{\mu}m$).

  • PDF

Current Status of Emitter Wrap-Through c-Si Solar Cell Development (에미터 랩쓰루 실리콘 태양전지 개발)

  • Cho, Jaeeock;Yang, Byungki;Lee, Honggu;Hyun, Deochwan;Jung, Woowon;Lee, Daejong;Hong, Keunkee;Lee, Seong-Eun;Hong, Jeongeui
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.17-26
    • /
    • 2013
  • In contrast to conventional crystalline cells, back-contact solar cells feature high efficiencies, simpler module assembly, and better aesthetics. The highest commercialized cell and module efficiency was recorded by n-type back-contact solar cells. However, the mainstream PV industry uses a p-type substrate instead of n-type due to the high costs and complexity of the manufacturing processes in the case of the latter. P-type back-contact solar cells such as metal wrap-through and emitter wrap-through, which are inexpensive and compatible with the current PV industry, have consequently been developed. In this paper the characteristics of EWT (emitter wrap-through) solar cells and their status and prospects for development are discussed.

Advances in Crystalline Silicon Solar Cell Technology

  • Lee, Hae-Seok;Park, Hyomin;Kim, Donghwan;Kang, Yoonmook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.82-82
    • /
    • 2015
  • Industrial crystalline silicon (c-Si) solar cells with using a screen printing technology share the global market over 90% and they will continue to be the same for at least the next decade. It seems that the $2^{nd}$ generation and the $3^{rd}$ generation technologies have not yet demonstrated competitiveness in terms of performance and cost. In 2014, new world record efficiency 25.6% (Area-$143.7cm^2$, Voc-0.740V, $Jsc-41.8mA/cm^2$, FF-0.827) was announced from Panasonic and its cell structure is Back Contact $HIT^*$ c-Si solar cell. Here, amorphous silicon passivated contacts were newly applied to back contact solar cell. On the other hand, 24.9% $TOPCon^{**}$ cell was announced from Fraunhofer ISE and its key technology is an excellent passivation quality applying tunnel oxide (<2 nm) between metal and silicon or emitter and base. As a result, to realize high efficiency, high functional technologies are quite required to overcome a theoretical limitation of c-Si solar cell efficiency. In this presentation, Si solar cell technology summarized in the International Technology Roadmap for Photovoltaics ($^{***}ITRPV$ 2014) is introduced, and the present status of R&D associated with various c-Si solar cell technologies will be reviewed. In addition, national R&D projects of c-Si solar cells to be performed by Korea University are shown briefly.

  • PDF

Stability Improvement of CdTe Solar Cells using ZnTe:Na Back Contact (Na 도핑된 ZnTe 후면전극을 이용한 CdTe 태양전지의 안정성 개선에 관한 연구)

  • Cha, Eun Seok;Park, Kyu Charn;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • Cu doping by copper or $Cu_2Te$ materials enhances p+ formation in CdTe near the back contact interface, allowing better formation of ohmic contact. However, the Cu in CdTe junction is also considered as a principal component of CdTe cell degradation. In this paper, Na-doped ZnTe layer was employed as a back contact material to improve the stability of CdTe solar cells. As a process variable, post $CdCl_2$ treatment of CdS/CdTe film was conducted before or after depositing ZnTe:Na on CdTe. The change of the photovoltaic properties of CdTe cells were investigated with aging time. Low-temperature photoluminescence analysis was conducted to describe the degradation mechanism. The result showed that the CdTe solar cells with better stability compare to Cu contact were achieved using an optimized ZnTe:Na back contact.

Simulated Study on the Effects of Substrate Thickness and Minority-Carrier Lifetime in Back Contact and Back Junction Si Solar Cells

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • The BCBJ (Back Contact and Back Junction) or back-lit solar cell design eliminates shading loss by placing the pn junction and metal electrode contacts all on one side that faces away from the sun. However, as the electron-hole generation sites now are located very far from the pn junction, loss by minority-carrier recombination can be a significant issue. Utilizing Medici, a 2-dimensional semiconductor device simulation tool, the interdependency between the substrate thickness and the minority-carrier recombination lifetime was studied in terms of how these factors affect the solar cell power output. Qualitatively speaking, the results indicate that a very high quality substrate with a long recombination lifetime is needed to maintain the maximum power generation. The quantitative value of the recombination lifetime of minority-carriers, i.e., electrons in p-type substrates, required in the BCBJ cell is about one order of magnitude longer than that in the front-lit cell, i.e., $5{\times}10^{-4}sec$ vs. $5{\times}10^{-5}sec$. Regardless of substrate thickness up to $150{\mu}m$, the power output in the BCBJ cell stays at nearly the maximum value of about $1.8{\times}10^{-2}W{\cdot}cm^{-2}$, or $18mW{\cdot}cm^{-2}$, as long as the recombination lifetime is $5{\times}10^{-4}s$ or longer. The output power, however, declines steeply to as low as $10mW{\cdot}cm^{-2}$ when the recombination lifetime becomes significantly shorter than $5{\times}10^{-4}sec$. Substrate thinning is found to be not as effective as in the front-lit case in stemming the decline in the output power. In view of these results, for BCBJ applications, the substrate needs to be only mono-crystalline Si of very high quality. This bars the use of poly-crystalline Si, which is gaining wider acceptance in standard front-lit solar cells.