• Title/Summary/Keyword: Back Tracking Algorithm

Search Result 108, Processing Time 0.029 seconds

Automatic Construction of Reactive Plans for A Box-Pushing Task of A Mobile Robot (모바일 로봇의 상자 밀어내기 작업을 위한 리엑티브 플랜의 자동 생성)

  • Cha, Byoung-Keun;Suh, Il-Hong;Lee, Sang-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.587-590
    • /
    • 2005
  • Reactive plans for a box-pushing task of a mobile robot are automatically built up, where sequential action plans are found in a configuration space by A* algorithm for various initial configurations. Then, conjunction of conditions to associate with a same behavior are found by a back tracking algorithm. And corresponding reactive plans are generated. Finally, a clustering technique is applied to identify which reactive plan should be applied for a given perceptual condition. Several simulation results are shown to justify our proposed approach.

  • PDF

Development of Intelligent Surveillance System Using Stationary Camera for Multi-Target-Based Object Tracking (다중영역기반의 객체추적을 위한 고정형 카메라를 이용한 지능형 감시 시스템 개발)

  • Im, Jae-Hyun;Kim, Tae-Kyung;Choi, Kwang-Yong;Han, In-Kyo;Paik, Joon-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.789-790
    • /
    • 2008
  • In this paper, we introduce the multi-target-based auto surveillance algorithm. Multi-target-based surveillance system detects intrusion objects in the specified areas. The proposed algorithm can divide into two parts: i) background generation, ii) object extraction. In this paper, one of the optical flow equation methods for estimation of gradient method used to generate the background [2]. In addition, the objects and back- ground video images that are continually entering the differential extraction.

  • PDF

Emotion Recognition and Expression System of Robot Based on 2D Facial Image (2D 얼굴 영상을 이용한 로봇의 감정인식 및 표현시스템)

  • Lee, Dong-Hoon;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.371-376
    • /
    • 2007
  • This paper presents an emotion recognition and its expression system of an intelligent robot like a home robot or a service robot. Emotion recognition method in the robot is used by a facial image. We use a motion and a position of many facial features. apply a tracking algorithm to recognize a moving user in the mobile robot and eliminate a skin color of a hand and a background without a facial region by using the facial region detecting algorithm in objecting user image. After normalizer operations are the image enlarge or reduction by distance of the detecting facial region and the image revolution transformation by an angel of a face, the mobile robot can object the facial image of a fixing size. And materialize a multi feature selection algorithm to enable robot to recognize an emotion of user. In this paper, used a multi layer perceptron of Artificial Neural Network(ANN) as a pattern recognition art, and a Back Propagation(BP) algorithm as a learning algorithm. Emotion of user that robot recognized is expressed as a graphic LCD. At this time, change two coordinates as the number of times of emotion expressed in ANN, and change a parameter of facial elements(eyes, eyebrows, mouth) as the change of two coordinates. By materializing the system, expressed the complex emotion of human as the avatar of LCD.

An Efficient Tag Identification Algorithm using Bit Pattern Prediction Method (비트 패턴 예측 기법을 이용한 효율적인 태그 인식 알고리즘)

  • Kim, Young-Back;Kim, Sung-Soo;Chung, Kyung-Ho;Kwon, Kee-Koo;Ahn, Kwang-Seon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.285-293
    • /
    • 2013
  • The procedure of the arbitration which is the tag collision is essential because the multiple tags response simultaneously in the same frequency to the request of the Reader. This procedure is known as Anti-collision and it is a key technology in the RFID system. In this paper, we propose the Bit Pattern Prediction Algorithm(BPPA) for the efficient identification of the multiple tags. The BPPA is based on the tree algorithm using the time slot and identify the tag quickly and efficiently using accurate bit pattern prediction method. Through mathematical performance analysis, We proved that the BPPA is an O(n) algorithm by analyzing the worst-case time complexity and the BPPA's performance is improved compared to existing algorithms. Through MATLAB simulation experiments, we verified that the BPPA require the average 1.2 times query per one tag identification and the BPPA ensure stable performance regardless of the number of the tags.

Parameter Estimation of Recurrent Neural Networks Using A Unscented Kalman Filter Training Algorithm and Its Applications to Nonlinear Channel Equalization (언센티드 칼만필터 훈련 알고리즘에 의한 순환신경망의 파라미터 추정 및 비선형 채널 등화에의 응용)

  • Kwon Oh-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.552-559
    • /
    • 2005
  • Recurrent neural networks(RNNs) trained with gradient based such as real time recurrent learning(RTRL) has a drawback of slor convergence rate. This algorithm also needs the derivative calculation which is not trivialized in error back propagation process. In this paper a derivative free Kalman filter, so called the unscented Kalman filter(UKF), for training a fully connected RNN is presented in a state space formulation of the system. A derivative free Kalman filler learning algorithm makes the RNN have fast convergence speed and good tracking performance without the derivative computation. Through experiments of nonlinear channel equalization, performance of the RNNs with a derivative free Kalman filter teaming algorithm is evaluated.

Semi-active control of ship mast vibrations using magneto-rheological dampers

  • Cheng, Y.S.;Au, F.T.K.;Zhong, J.P.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.679-698
    • /
    • 2008
  • On marine vessels, delicate instruments such as navigation radars are normally mounted on ship masts. However the vibrations at the top of mast where the radar is mounted often cause serious deterioration in radar-tracking resolution. The most serious problem is caused by the rotational vibrations at the top of mast that may be due to wind loading, inertial loading from ship rolling and base excitations induced by the running propeller. This paper presents a method of semi-active vibration control using magneto-rheological (MR) dampers to reduce the rotational vibration of the mast. In the study, the classical optimal control algorithm, the independent modal space control algorithm and the double input - single output fuzzy control algorithm are employed for the vibration control. As the phenomenological model of an MR damper is highly nonlinear, which is difficult to analyse, a back- propagation neural network is trained to emulate the inverse dynamic characteristics of the MR damper in the analysis. The trained neural network gives the required voltage for each MR damper based on the displacement, velocity and control force of the MR damper quickly. Numerical simulations show that the proposed control methods can effectively suppress the rotational vibrations at the top of mast.

Real Time Neural Controller Design of Industrial Robot Using Digital Signal Processors (디지탈 신호 처리기를 사용한 산업용 로봇의 실시간 뉴럴 제어기 설계)

  • 김용태;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.759-763
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Design of AMI Robot Control System Using PSD and Back Propagation Algorithm (PSD 및 역전파 알고리즘를 이용한 AMI 로봇의 제어 시스템 설계)

  • 이재욱;서운학;김휘동;이희섭;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.393-398
    • /
    • 2002
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. forthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Experimental Studies of neural Network Control Technique for Nonlinear Systems (신경회로망을 이용한 비선형 시스템 제어의 실험적 연구)

  • Jeong, Seul;Yim, Sun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.918-926
    • /
    • 2001
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented. Simulation studies for three link rotary robot are performed. Neural network controller is implemented on DSP board in PC to make real time computing possible. On-line training algorithms for neural network control are proposed. As a test-bed, a large x-y table was build and interface with PC has been implemented. Experiments such as inverted pendulum control and large x-y table position control are performed. The results for different PD controller gains with neural network show excellent position tracking for circular trajectory compared with those for PD controller only. Neural control scheme also works better for controlling inverted pendulum on x-y table.

  • PDF

Intelligent Control Design of Mobile robot Using Neural-Fuzzy Control Method (뉴럴-퍼지 제어기법에 의한 이동로봇의 지능제어기 설계)

  • 한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.62-67
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized loaming architecture. It is Proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tucking of the speed and azimuth of a mobile robot driven by two independent wheels.