• Title/Summary/Keyword: Back Reflector

Search Result 74, Processing Time 0.031 seconds

A Study on the Multiple CCFL Operation and Brightness Improvement (다수의 CCFL 구동과 휘도 향상에 관한 연구)

  • Park, Jung-Oh;Kim, Cherl-Jin;Park, Hyun-Cherl
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.126-128
    • /
    • 2008
  • This paper presents an architecture for driving multiple paralleled cold cathode fluorescent lamps (CCFLs) for back lighting applications. Multi CCFL operation and increase of brightness, the key to the architecture is a proposed capacitive coupling approach for lamp ignition. This system is consist of a flyback converter, a single inverter to drive multiple lamps and conductive floating reflector. The topology is capable of driving a number of parallel lamps with independent accurate lamp, The capacitive coupling the leakage inductance and stray capacitance creation which it used, current regulation and improving cost effectiveness with significant reduction in size and weight, compared to typical high frequency ac ballast. Experimental demonstration results for ten of parallel CCFLs with simultaneous ignition.

  • PDF

A Study on the Optimal Design for Optical Efficiency of LED (LED의 광효율 최적설계에 관한 연구)

  • Song, Young-Jae;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.361-367
    • /
    • 2011
  • In this paper, it was attempted to analyze the optimal design of light emitting diode (LED), a source of back light unit (BLU). LED is beginning with commercialized red LED which is made by GaAsP compound semiconductor, and has been developed focusing on liquid crystal panel. In order to get the optimal design, optical simulation was made by analyzing luminosity shape, reflector angle, chip depth, and chip position of LED lighting. Final results show that the proposed LED characteristics were useful to increase light efficiency and it has been proven by distribution chart for actual exposed light on the light guide panel (LGP).

Study on 2×2 Subarray Antenna for Implementation of VHF Band Active Electronically Scanned Array (VHF 대역 능동 위상 배열안테나 구현을 위한 2×2 부배열 안테나 설계에 관한 연구)

  • Kim, Sungpeel;Han, Junyong;Jang, Younhui;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.473-476
    • /
    • 2018
  • Herein, a $2{\times}2$ subarray antenna is designed to implement a VHF band active electronically scanned array. The Yagi-Uda antenna is used as a radiating element. The bandwidth enhancement and miniaturization of the Yagi-Uda antenna are achieved by optimizing the diameter of a driven element and the length of a director. In addition, the grid reflector is utilized to improve the front-to-back ratio(FBR) and to reduce both the wind resistance and overall system weight. The fabricated $2{\times}2$ subarray antenna fully covers the VHF target band($0.98{\sim}1.02f_c$). The measured maximum gain is 10.61 dBi and the FBR is larger than 26 dB.

Design of a compact quasi-Yagi antenna for portable RFID reader (휴대형 RFID 리더용 소형 준-야기 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • In this paper, we considered a design method of a compact quasi-Yagi antenna for portable UHF RFID readers. The antenna consists of a dipole driver and a reflector printed on a dielectric substrate, and it is fed by a microstrip line. In order to reduce the antenna size, the dipole and reflector are bent and the balun between the feeding microstrip line and coplanar strip (CPS) line is integrated within the CPS line. The effects of the geometrical parameters of the proposed antenna on the antenna performance are examined, and the parameters are adjusted to be suitable for the operation in UHF RFID band (902-928 MHz). The size of the fabricated antenna is $70mm{\times}75mm$, and the experiment results reveal a frequency band of 892-942 MHz for a voltage standing wave ratio < 2, a gain > 3.5 dBi, and a front-to-back ratio > 6.6 dB over the frequency band for UHF RFID.

3-Element Quasi-Yagi Antenna with a Modified Balun for DTV Reception (변형된 밸런을 갖는 DTV 수신용 3소자 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.672-678
    • /
    • 2017
  • In this paper, we studied a design method for a broadband quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) reception. The proposed antenna is composed of a dipole driver, a rectangular patch type director close to the dipole, and a ground reflector printed on an FR4 substrate. A balun between a microstrip line and a coplanar strip (CPS) line is a rectangular patch inserted along the center of the CPS. The end of the balun is connected to the CPS line through a shorting pin. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV, and the characteristics of the designed antenna are examined. The antenna has a good performance such as a frequency band of 430-842 MHz for a voltage standing wave ratio < 2, a gain > 3.7 dBi, and a front-to-back ratio > 7.4 dB.

Design of SPA Antenna Using FET Switch for 2.6 GHz (FET 스위치를 이용한 2.6 GHz 용 SPA 안테나 설계)

  • Kang, Hyun-Sang;Park, Young-Il;Yong, Hwan-Gu;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1137-1144
    • /
    • 2012
  • In this paper, a 2.6 GHz switched parasitic array(SPA) antenna is designed to resolve the device interference in the femtocell. The designed SPA antenna structure consists of a central ${\lambda}/4$ monopole antenna as a radiator and surrounding four parasitic elements operating as a reflector or a director depending on the switching state. In addition, open state monopoles around the parasitic elements are placed to improve the directivity. The designed antenna utilizes RF FETs as switching elements instead of conventional PIN diodes, which enables beam steering with a simple structure consuming low power. To select the proper FET switch, the performance of the SPA antenna depending on the switch characteristics is analyzed. The fabricated antenna has 65 mm radius and 35 mm height, which shows about 15 dB front-back-ratio(FBR) at 2.6 GHz and enables eight-directional beam steering.

A Study on Thermal Characteristics of Carbon-Organic Surface Heating Element with Electrodeless Lamp of a Freezer (냉동고 무전극램프 적용 탄소-유기소재 면상발열체의 열 특성에 관한 연구)

  • Lee, Min-Sang;Back, Seong-Hun;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This study deals with the fabrication and thermal characterization of planar heating elements attached to the backside of the reflector used in the electrodeless lamp of a freezer. We tried to solve the problem of the local heat generation of the linear heating element that occurs about 50℃. The homogeneous dispersion and manufacturing excellence of the planar heating element produced were confirmed through SEM and EDS. In addition, the test specimens was prepared according to the change in the ratio of carbon fiber to the basis weight of the planar heating element, and a sample having a basis weight of 50g/㎡ having a content ratio of carbon fiber of 70% was selected. That sample showed low surface resistance of 4.3Ω/sq and high temperature of about 81℃ at 6V. Durability was confirmed by performing repeated bending evaluation of 3000 cycles for the sample. Large area test specimens were prepared to be applied to the actual reflector, insulated by EVA film and analyzed for their thermal characteristics. From 13V application, the temperature of the linear heating element was higher than 50℃ and the average temperature of 68℃ was maximum at 18V.

Analysis of Generation Characteristics of a Bifacial BIPV System According to Installation Methods (양면형 BIPV 시스템의 설치환경에 따른 발전특성 분석)

  • Kang, Jun Gu;Kim, Jin Hee;Kim, Jun Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.121-125
    • /
    • 2015
  • BIPV system is one of the best ways to harness PV module. The BIPV system not only produces electricity, but also acts as a building envelope. Thus, it has the strong point of increasing the economical efficiency by applying the PV modules to the buildings. Bifacial solar cells can convert solar energy to electrical energy from both sides of the module. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial soalr cells. Therefore, many of the module manufacturers can easily produce the bifacial solar cells without changing their manufacturing equipment. Moreover, bifacial BIPV system has much potential in building application by utilizing glass to glass structure. However, the performance of bifacial solar cells depends on a variety of factors, ranging from the back surface to surrounding conditions. Therefore, in order to apply bifacial solar cells to buildings, an analysis of bifacial PV module performance should be carried out that includes a consideration of various design elements, and reflects a wide range of installation conditions. As a result it found that the white insulation reflector type can improve the performance of the bifacial BIPV system by 16%, compared to the black insulation reflector type. The performance of the bifacial BIPV was also shown to be influenced by inclination angle, due to changes in both the amount of radiation captured on the front face and the radiation transmitted to the rear face through the transparent space. In this study is limited design condition and installation condition. Accordingly follow-up researches in this part need to be conducted.

Design of Compact Broadband CPW-fed Quasi-Yagi Antenna (CPW 급전 소형 광대역 준-야기 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.59-60
    • /
    • 2017
  • In this paper, we studied a design method for obtaining broadband property by loading a chip capacitor on a coplanar waveguide(CPW)-fed compact quasi-Yagi antenna(QYA). The proposed antenna is a three-element QYA with dipole, reflector, and director. To reduce the size, the ends of both dipole and reflector are bent, and balun is incorporated in the antenna. To improve impedance matching, the loading position and capacitance value of chip capacitor were determined. From some simulations, the proposed antenna using an FR4 substrate with a size of 90 mm by 90 mm was designed for the operation in a broadband covering the UHF RFID and GPS systems. The antenna showed a good performance with a broadband of 850-1,626 MHz(62.7%) for a VSWR ${\leq}2$, a gain ${\geq}3dBi$, and a frong-to-back ratio ${\geq}4.6dB$.

  • PDF