• Title/Summary/Keyword: Back Propagation

검색결과 1,469건 처리시간 0.035초

신경회로망을 이용한 마이크로그리드 단기 전력부하 예측 (Short-Term Load Forecast in Microgrids using Artificial Neural Networks)

  • 정대원;양승학;유용민;윤근영
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.621-628
    • /
    • 2017
  • This paper presents an artificial neural network (ANN) based model with a back-propagation algorithm for short-term load forecasting in microgrid power systems. Owing to the significant weather factors for such purpose, relevant input variables were selected in order to improve the forecasting accuracy. As remarked above, forecasting is more complex in a microgrid because of the increased variability of disaggregated load curves. Accurate forecasting in a microgrid will depend on the variables employed and the way they are presented to the ANN. This study also shows numerically that there is a close relationship between forecast errors and the number of training patterns used, and so it is necessary to carefully select the training data to be employed with the system. Finally, this work demonstrates that the concept of load forecasting and the ANN tools employed are also applicable to the microgrid domain with very good results, showing that small errors of Mean Absolute Percentage Error (MAPE) around 3% are achievable.

인공신경회로망을 이용한 원공결함을 갖는 유한 폭 판재의 음향방출 음원특성과 파괴거동에 관한 연구 (Acoustic Emission Source Characterization and Fracture Behavior of Finite-width Plate with a Circular Hole Defect using Artificial Neural Network)

  • 이장규;우창기
    • 한국공작기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.170-177
    • /
    • 2009
  • The objective of this study is to evaluate an acoustic emission (AE) source characterization and fracture behavior of the SM45C steel by using back-propagation neural network (BPN). In previous research Ref. [8] about k-nearest neighbor classifier (k-NNC) continuity, we used K-means clustering method as an unsupervised learning method for obtaining multi-variate AE main data sets, such as AE counts, energy, amplitude, risetime, duration and counts to peak. Similarly, we applied k-NNC and BPN as a supervised learning method for obtaining multi-variate AE working data sets. According to the error of convergence for determinant criterion Wilk's ${\lambda}$, heuristic criteria D&B(Rij) and Tou values are discussed. As a result, in k-NNC before fracture signal is detected or when fracture signal is detected, showed that produce some empty classes in BPN. And we confirmed that could save trouble in AE signal processing if suitable error of convergence or acceptable encoding error give to BPN.

다층 신경회로망의 자기 적응 학습과 그 응용 (Self-Adaptive Learning Algorithm for Training Multi-Layered Neural Networks and Its Applications)

  • 정완섭;조문재
    • The Journal of the Acoustical Society of Korea
    • /
    • 제13권1E호
    • /
    • pp.25-36
    • /
    • 1994
  • 본 논문에서는 외부로부터 제공되는 학습데이타에 신경회로망의 자기적응화(self-adaptation)를 이룩하기 위한 접근론이 기술된다. 이러한 문제점은 신경회로망의 학습이론, 즉 현재의 학습 데이터에 적절한 신경회로망이 가중치 벡터들(weight vectors)의 개선 방법론에 기인된다. 이들에 관련된 문제점들의 이론적 검토와 아울러 신경회로망의 학습에 대한 근본적인 요소들이 재조명된다. 현재 가장 널리 이용되고 있는 후방 전달(back-propagation) 학습법과 비교함으로써, 본 연구에서 제안된 자기적응 학습법의 유용성과 우위성을 컴퓨터 모의시험 결과로 입증하게 된다.

  • PDF

신경회로망을 이용한 전동기의 고장 부분 탐지 (Failure Detection of Motors using Artifical Neural Networks)

  • 이권현;강희조
    • 한국통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.47-57
    • /
    • 1992
  • 전동기 회전시 발생되는 소음이 전동기 구조상의 소손부분 및 정도에 따라 서로 다른 소음의 특징을 갖는다는 점을 고려하여 신경회로망을 이용한 시그널(소음)인식 시스템으로써 전동기의 고장부분 탐지에 적용하였다. 적용된 신경회로망은 역전파(back-propagation)알고리즘을 써서 학습하였고 2개의 은역층을 갖는 4단 신경회로망으로 구성 되었다. 실혐 결과 전동기의 구조와 출력이 거의 일치하는 경우에는 고정 부분에 대한 항상 바른 판정을 내릴 수 있었으나 출력은 유사하더라도 전동기의 구조가 상이한 경우나 전동기 제작회사가 다른 경우에는 부정확한 판정으로 나타난다.

  • PDF

신경회로망을 이용한 퍼지룰의 추론과 학습에 관한 연구 (A Study on Reasoning and Learning of Fuzzy Rules Using Neural Networks)

  • 이계호;임영철;김이곤;조경영
    • 한국통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.231-238
    • /
    • 1993
  • 퍼지제어룰은 일반적으로 시스템에 대한 전문오퍼레이터나 기술자가 갖고 있는 애매모호함을 포함하고 있는 제어지식을 시스템의 입 출력 분할에 의해 if-then이라는 언어적 룰로서 표현하는 것으로 전문오퍼레이터나 기술자의 제어지식 자체의 부정확과 룰의 불완전등으로 완전하게 표현한다는 것은 대단히 어렵다. 이러한 불완전한 룰의 정확도를 시스템 동작 후에도 연속적으로 높이기 위한 방법으로서 신경회로망에 의한 퍼지 추론과 학습을 제시한다. 이 방식은 시스템의 퍼지롤의 후건부를 층상신경회로망의 역전파(Back-propagation) 학습방법에 의한 정확도를 증진시키고, 전건부의 적합도를 연상기억방식에 의해 추론하는 방식으로서, 이 방식을 이용하여 한정된 구역 내에서 숙련된 기술과 지식이 필요한 차의 안전하고 신속한 정차를 위한 Auto-Parking Fuzzy Controller를 설계하고 시뮬레이션을 통해 그 타당성을 입증하였다.

  • PDF

뉴런 활성화 경사 최적화를 이용한 개선된 플라즈마 모델 (An improved plasma model by optimizing neuron activation gradient)

  • 김병환;박성진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.20-20
    • /
    • 2000
  • Back-propagation neural network (BPNN) is the most prevalently used paradigm in modeling semiconductor manufacturing processes, which as a neuron activation function typically employs a bipolar or unipolar sigmoid function in either hidden and output layers. In this study, applicability of another linear function as a neuron activation function is investigated. The linear function was operated in combination with other sigmoid functions. Comparison revealed that a particular combination, the bipolar sigmoid function in hidden layer and the linear function in output layer, is found to be the best combination that yields the highest prediction accuracy. For BPNN with this combination, predictive performance once again optimized by incrementally adjusting the gradients respective to each function. A total of 121 combinations of gradients were examined and out of them one optimal set was determined. Predictive performance of the corresponding model were compared to non-optimized, revealing that optimized models are more accurate over non-optimized counterparts by an improvement of more than 30%. This demonstrates that the proposed gradient-optimized teaming for BPNN with a linear function in output layer is an effective means to construct plasma models. The plasma modeled is a hemispherical inductively coupled plasma, which was characterized by a 24 full factorial design. To validate models, another eight experiments were conducted. process variables that were varied in the design include source polver, pressure, position of chuck holder and chroline flow rate. Plasma attributes measured using Langmuir probe are electron density, electron temperature, and plasma potential.

  • PDF

피드백과 박스 보정을 이용한 Particle Filtering 객체추적 방법론 (Particle Filtering based Object Tracking Method using Feedback and Tracking Box Correction)

  • 안정호
    • 한국위성정보통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.77-82
    • /
    • 2013
  • 최근 주목을 받고 있는 Particle Filtering은 실제 객체 추적에서 발생하는 비선형, 비 가우시안 분포를 가지는 상태 벡터의 사후확률을 추정하기 위한 Monte Carlo 시뮬레이션에 기반을 둔 추적 방법론이다. 우리는 본 논문에서 Particle Filtering을 이용한 객체 추적성능을 향상시킬 수 있는 두 가지 방법론을 제안한다. 첫 번째는 확률이 가장 낮은 샘플을 이전 프레임의 추정된 상태 벡터로 대치하는 피드백 방법론이고, 두 번째는 객체 확률 분포를 추정된 객체 후보영역에 역투영하여 신뢰구간을 구함으로써 추적 박스의 정확도를 향상시키는 방법이다. 또한, 실험을 통해 구한 추적 샘플의 진화 방정식을 제시하였다. 우리는 다양한 상황이 설정된 실험 데이터 셋을 구성하여 실험을 실시하여 제안한 방법론의 우수성을 입증하였다.

신경망과 유한요소법을 이용한 단조품의 초기 소재 형상 결정 (Determination of Initial Billet Size using The Artificial Neural Networks and The Finite Element Method for a Forged Product)

  • 김동진;고대철;김병민;최재찬
    • 소성∙가공
    • /
    • 제4권3호
    • /
    • pp.214-221
    • /
    • 1995
  • In the paper, we have proposed a new method to determine the initial billet for the forged products using a function approximation in the neural network. The architecture of neural network is a three-layer neural network and the back propagation algorithm is employed to train the network. By utilizing the ability of function approximation of a neural network, an optimal billet is determined by applying the nonlinear mathematical relationship between the aspect ratios in the initial billet and the final products. The amount of incomplete filling in the die is measured by the rigid-plastic finite element method. The neural network is trained with the initial billet aspect ratios and those of the unfilled volumes. After learning, the system is able to predict the filling regions which are exactly the same or slightly different to the results of finite element simulation. This new method is applied to find the optimal billet size for the plane strain rib-web product in cold forging. This would reduce the number of finite element simulation for determining the optimal billet size of forging product, further it is usefully adapted to physical modeling for the forging design.

  • PDF

디지탈 신호 처리기를 사용한 산업용 로봇의 실시간 뉴럴 제어기 설계 (Real Time Neural Controller Design of Industrial Robot Using Digital Signal Processors)

  • 김용태;한성현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.759-763
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

신경망을 이용한 선박용 자동조타장치의 제어시스템 설계 (II) (Design of Neural-Network Based Autopilot Control System(II))

  • 곽문규;서상현
    • 대한조선학회논문집
    • /
    • 제34권3호
    • /
    • pp.19-26
    • /
    • 1997
  • 본 논문에서는 신경망을 이용한 선박자동조타장치의 개발에 관한 연구결과를 소개한다. 앞의 논문에서 소개된 Back-Propagation 알고리즘을 이용하여 선박의 자동운항을 위한 자동제어방법을 개발하였으며 그 결과 기준모델추구신경망제어기와 순간최적제어기를 설계하였다. 기준모델추구신경망제어기는 선수각과 선수각속도가 주어진 기준모델을 추구하도록 타각을 제어하도록 하였으며, 순간최적제어기는 현 상태에서 다음상태로의 천이를 최적화하도록 하였다. 신경망에 근거한 이들 제어기법을 간단한 선박조종수치모델에 적용한 결과 그 효용성을 확인할 수 있었다.

  • PDF