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Self-Adaptive Learning Algorithm for Training
Multi-Layered Neural Networks and Its Applications
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ABSTRACT

A problem of making a neural network tearning self-adaptive to the training set supplied is addressed in this
paper. This arises from the aspect in choice of an adequate stepsize for the update of the current weigh vectors ac-
cording to the training pairs, Related issues in this attempt are raised and fundamentals in neural network learning
are introduced. In compérison to the most popular back-propagation scheme, the usefulness and superiority of the
proposed weight update algorithm are tlustrated by examing the identification of unknown nonlinear systems only

from measurements,
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I. Introduction tred on multi-layered neural networks, which have
been proven to be very successful in pattern rec-

The use of a ‘brain-like’ model has been recently ognition [1-3]. This is essentially due to the ability

introduced to ‘solve’ dynamical systems problems
in many applied science fields, The modei, refer-
red to as a neural network, is becoming 4 signifi-
cant way of providing a systematic basis for tack-
ling a variety of problems. Among many possible
neural network models, much attention has cen-
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of (adaptively) approximating analytically unknown
nonlinear relationship between ‘input’ patterns and
‘desired output’ patterns. They provide the major
motivation in approaching nonlinear systems pro-
blems in what will follow,

Specifically, given a time series of measured
inputs {ua} to, and outputs {y,.} from a dynamical
system, these may be a sequence of paired inputs
and outputs corresponding to the input patterns
and the desired output patterns, Looking for
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rhcer assOCations 15 essentially patternt recog-
nition. Thus, o 35 logical to exarmine the effec
pvenoss of newal network models o system id
ontification. In Fig.l, the input training patterns
S8 -t is o seen to be reconstructed from the meas-
gred systen inputs and output using three delay

taps, that s

¢
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for rime index n, (1)
and the desired model outputs tya ! 1s directly

assigned to the measured system outputs
_"Pd n y:'.‘i. {2]

This reconstruction is referred to as the “time-in-
variant imbedding method” [4]. The three delaye
tpas in {1} are chosen to ‘safely’ reconstruct the
input patterns in neural network-based dynamic
system modeling. This choice is due to Takens and
Maine theorems [5,6] for chaotic systems so as
to obtain a “smooth™ trajectory without any ¢ros:
sing point in reconstructed state space, but they
may be not necessarily limited to such systems.
The choice of three delays will be applied to

determimstic, non-chaotic systems 1n this study.
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fig. 1. Conceptual setup of neural network-based sys-
tem identification model.

In Fig. 1, the neural network is chosen to mat-
ch the measured system outputs {yn+} for its in-
pULS 81, n=1{¥n, ¥n~1. ¥n-2, Un, Un-3, Ug-a3. This
15 a natural representation of discrete nonlinear
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dynamical systems, i.e. the one-step ahead output

transition function
¥ntj «—— Nn:‘:N(S],u. W} {3)

Here, a problem to be addressed in this study is
obvious : How to estimate the set of neural net-
work weigths W well matched with the series of
training pairs {s » and yg .} 7 In Section 2, the
fundamentals of muiti-layered neural networks
and the difficulties arising in using the popular
back-propagation and its relatives are highligh-
ted. In Section 3, @ new approach, referred to as
the self-adaptive learning algorithm, is suggested
to overcome them, In Section 4, simulation results
and discussions are made in comparisen with those
of the conventional algorithms, Finally, conclud-
ng remarks are sunrnarised.

1. Multi-Layered Neural Network and Learning
Algorithms

2.1 Multi-Layered Neural Networks

In this paper, a three-layered neural network.
denoted by An,-n,-n, Where the subscripts Ny, N,
and N: are the size of the input layer, the hidden
layer and the output layer respectively, is con-
sidered. 1t performs a cascaded nonlinear map-
ping of the input vector s onto the output N as
shown in Fig. 2.

Input Hidden Output
Layer Layer
1
SI—-+[W’ I—-IL!Ianh(zl )|-L+| w? }-Io
et
Nonlinear Mapping Lmear Mappm g

Fig- 2. Three-layered neural network, #n-n,-n,.

Two weight matrices W! and W? corresponding
to the hidden layer and the output layer partici-
pate in the three-layered neural network. The in-
put s; is projected to the first weight W! and then
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the hidden laver output. denoted by the vector h,
Lol ained by ovplatng a nonlinear maping be

unded in 1, 1],

h=tanh{W'- g} ={ tanh(w}-s)), tanh(w!-s;), ..

tanh{wl, s 1", 4}
This hidden layer mapping converts the input sp-
ace of dimension N; onto another bounded space
with dimension Ny. The functional characteristics
of this mapping ts wholly dependent on the hid
den layer matrix W' so that different choices of
the weight result in different nonlinear function-
als described by the hidden layer state h. This is
guite a useful property m neural network-hased
nonlimear medeliing, which has provided the ma-
jor motivation of exploring the.

Specifically, the second weight matrix W= as
used to reconstruct the output space of dimension
N- from the bhounded hidden-tayer space of size N,
in the mdden layer. [t 13 the reason for selecting
a simple linear mapping in the output layer, re
ferred to as the “weighted-sum” scheme,

N==W?-h (5!

This operation is one of fundamentals in the el-
ernentary unit of neural networks, called the neu-
ron, This scheme makes some difference in the non-
linear system modelling problems, When the dy-
namic range of the desired mode] output is larger
than 1.0, the weighted-sum scheme can cover the
range. But, when the output Jayer consists of the
sigmoid unit as in {4) then the maximum range of
the output is limited in | — 1. 1] so that this net
work can not cover the output range of larger
than 1.0. The linear output model shown in Fig, 3
1s seen to be the more plausible model for non:
linear dynamical systems representation,

The above three-layered neural network hasi-
cally performs the two-stage mapping : the bound-
ed nonlinear mapping of the input state onto the

hidden iayer state and the linear mapping to re
vonstiinet Lie network entput from the hounded
apdrben atnrs ER s feedigd o naplonod Sroestimu
an unknown nonlinear relationship between the
measured inputz and outputs tor unknown por
linear dvnamical systems, Here one point is ochvi-
ous that the bounded hidden layer state (4) is un
dersiood to be basis functionals for the recon-
struction of the network output and that their
functional characteristics can be determined by
selecting the hidden laver weight matrix. The
network output is seen to be reconstructed by the
wetghted-sum of the basis functionals using the
wetght matrix of the output layer. This two-stage
nonlinear mapping leads to the estimation of an
unkpown discrete-time representation imbedded
in nonlinear system measurements. I 13 apparent
that a key 1ssue here 15 how to estimate the set
of neural network weights adequate for a series
of measurements of nonlinear dynamical systems.
[t is referred to as the neural network learning al-
gonithm, which 18 further addressed in the rest of

this section.

2.2 Back-Propagation Algorithm and $ts Rejatives

Most learning laogrithms for multi-layered neur-
al networks are based on the geometrical features
of output errors between the desired and current
outputs of the neural networks, Unfortunately,
the errors of the muiti-lavered neural networks
are non-linearly dependent on the weights. This
does not always enable us easily to see such geo
metnical features as local minima or a global mini-
mum. However, the simplest scheme, that is the
steepest descent method. has been widely used to
eshinkte the weight as, for example, in the work
of Nuguen and Widrow [7] and Narendra and Par-
thasaraty 18). 1t is conceptually identical to the
back-propagation algorithm, introduced by Rum-
melhart ef @/. 19]. Given the squared value of the

model output error

an—é_ rl}Id,n_Ntsl.n. wu”lg, (6)



the welght update scheme of the back-propagation
Hgorithm s described by

W, W, + O DBy = Wn— FI t?’Jn/I(}WIM (7)

A positive constant g is the learning rate (step
size) and Dy, denctes the search direction,

At the beginning of the research, the back-pro-
pagation algorithm was chosen to understand the
fundamentals of training the above three-layered
neural network for nonlinear system modelling,
Two well-known systems-the van der Pol oscil-
lator and the Henon map-were chosen for study.
When the weight update scheme (7) is used to
identify nonfinear systems form measurements,
several limitations arise (refer to reference [10)
for detailed information). Important factors first
encountered from these attempis are as follows :
the initially chosen weights W, and the learning
rate p for each application, referred to as the
neural network training factors, play critical roles
in the asymptotic accuracy of chosen neural net-
work models for system representation and their
convergence rate in estimating the adequate
weight vectors.

An intuitive weight estimation scheme was fir-
st used in the research, referred to as the iterat-

]r Measurable Nonlinear Systems :
| UStn,ysn:n=1,.. Nt}

i Whtin
Training the Neural Network Model : Piax(N, itn)
Wasl = Wa+ fim-Dn, forn=1,..., Nt

I Control the Training Parameters for each iteration :
| (1) Wo,im+1 <---- Wit
(2 If Piax(Ny, itn) 2 Cr- Pidx(Ny, itn-1),

then Hinet <---- Cd flimn,

else Him+l <---- pitn.
(3} If Piea(Ny, itn) < Pidx, min

Wopt <---- Whtitn and Pidx, min <---- Pidx(Ny, itn).
(4) If itn > Ttn_Max, then Stop Training. -

Fig- 3 Schematic diagram of the iterative learning al-
gorithm : Cs=the control factor of the perform-
ance factor, Cq=the decay constant of the re-
duction rate, itn =the iteration index, and piin
=the learning rate (step-size) at iteration index
itn,
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ive learning algorithm. Fig. 3 shows the concep-
tual set-up of the algorithm. It involves a delicate
‘house-keeping’ scheme for choosing the initial
weights Wy . for each iteration, searching the be-
st fit weight set, and decreasing the current learn-
ing rate,

Fig. ‘3. Schematic diagram of the iterative le-
arning algorithm : Ci=the control factor of the
performance factor, Ca=the decay constant of
the reduction rate, itn=the iteration index, and
gan=the learning rate (step-size) at iteration in-
dex itn,

In Fig. 3, the performance index denoted by
Pux{ -} is defined by the mean squared value of
normalised errots at the time index n

n

oL
Puxfn, itn) = - pag

1z

lva i(n) =Ni(n)§2/o"F (8)

where o, denotes the variance of the i-th desired
output and ‘itn’ is the iteration index. Specifi-
cally, the learning rate pi,+; for the next iter-
ation is determined by the comparison between
the current performance index Pig(Nt, in) and
the reference value Ci-Piac(n, itn—1), that is the
previous one multiplied by the control factor C;
(slightly larger than one, e.g. Ci=1.002). If Py
(Nt, itn) = C¢-Pigy(n, itn—1), then the learning
rate is relatively decreased by the decay factor
Ca<<1, Of cause, if the decrease mechanism of
the learning rate is chosen to be inactive in the
above house-keeping scheme, the iterative algor-
ithm becomes identical to the back-propagation
algorithm,

The starting weight Wy at the first iteration is
initialised by a ‘small’ random variable uniformiy
distributed in [ —0,01, 0.01] so as to minimise the
effect of choice of the initial weights on the per-
formance of the learning algorithm. Moreover,
the initial learning rate is assigned by a large
value in order to obtain a ‘fast’ searching at the
beginning of training stages, Therefore, the iter-
ative learning scheme shown in Fig. 3 can reduce
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at least the amount of labour needed to select the
adequate network training factors-the initial we
ight and the learning rate for each apphcation
through repeated trial-and-errors,

The learning rate in this learmng algorithm gr-
adually decreases whenever the performance is no
longer improved. This scheme seems to be safer
for 'fine-tuning’ of the network weights than the
global constant case in the back-propagation or
its refatives [7-4). The smaller learning rate is in-
tuitively understood to be effective when the est-
imated weights are close to the ‘minimal’ con-
dition, The geometrical feature in this specific
case may be seen by a quadratic approximation of
the cost function. This will be further addressed
in the following sections.

1. Seif-Adaptive Learning Algorithm

3.1 Local Minimum and Seif-Adaptive Leaming Rate

The back-propagation algorithm and the iterat-
ive learning algorithm above consist of two basic
strategies : the search direction and the step-size
for the weight update. To improve the searching
direction is a multi-dimensional search problem
while the determination of the step-size is an one-
dimensional one. The latter problem is much sim-
pler than the former in a sense of optimisation {rmin-
imisation/maximisation}[15]. Howeverm little is
known about this in the neural network field. Sp-
ecifically, this study considers the step-size (learn-
ing rate) as an one-dimensional optimisation vari-
able which wili be determined for each traimng
pair. Given the squared value of the normalised
error attempted to be minmised

lya {n) =N{n}l/a? (9

K g 4

=1
Jn" 2

then the search direction is given as the steepest
descent direction of (9) with respect to the cur-
rent weight

D.= clfeW., (10}

The normalised form (7} is chosen in this resear-
ch due to the advantages that it can be used to
test not only the performance of a trained neural
network but also to calculate the chi-squared
value for the goodness-of-fit of the estimated we-
ight. Given the current learning rate (to be de
termined) and the current search direction {10,
the weight is updated in the same way as the
above algorithm

Wi =W+ ftn * D.=W,— pn * {‘?’J..fﬁw,—” {1

To approach the problem of determining the
current learning rate ., this paper considers an
intermediate cost function which is obtained by
substituting (11) into (9)

i1z

JI“L ﬂn) = "Iy.‘f.‘{n)_N.{SJ.n. wn+jln' Dn”lz}rfh"‘

e

W= o)
;

g

leiln, un) foitl2 (12)

It is noted from (12} that the learning rate g, can
be obtained in such a way to minimise the inter-
mediate cost function. This shows that the cur-
rent learning rate can be determined from the ‘lo-

cal’ minimum of the intermediate cost function ],
{n, ua) with respect to the unknown g,. This con-
dition may be described by

éltn, ) fépun=0 and  &i(n, pn) /P, = 0.
{13}

This is the sufficient condition for the (local) min-
imum of the cost function with a ‘locally bowl-
like" geometrical shape and is used to determine
the unknown learning rate. Here one point is ob-
vious that the learning rate is adaptively deter-
mined from the current training pair {8 o, Yo n)
and the current network weights W,. To empha-
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sre Uhs featare, 1t is referred to as the ‘self

adaptive’ learniig rate.

3.2 Setf - Adaptive Learning Rates
3.2.1 Self-Adaptive Learning Rate for a Single-Out-
put Neural Network
tirst, a single-output neural network denoted
b M, - is considered. In this case N2=1 in
equation {12). By applying the first sufficient con-

dition of {13) to the cost function (12}, we obtain
ein )= 0 and  AN(n, pn)/épn =0 (14}

The first equation 1s easily shown to satisiv the

positive semi-definiteness of {13) since
I, o) [ = LN, pnd fSpndl? 2 0 (15)

This 15 sufficient to determine the current learn-
g rate, But, semi-definiteness is not seen from
the sccond equation of (14). Thus, the learning
rate is obtained by solving the following equation

which 15 approximated to the first order

ejin, ﬂ'n) =0=¥dn— [ w‘;+ﬂu‘D$\] . h{sl.n‘ wln+ﬁ1n 'DL}

Zep— [ DY b+ W - AR, ) (16

where en=[Yq n— WS- his; », W})], the model
output erroy
W? and W= the weights of the output and
hidden layers,
D! and D} = the search directions of the out-
put and hidden layer weight,
h,=the output of the hidden layer,
and Ah, =the first order approximation of the
hidden layer output.
The superscripts ‘o” and °'1° denote the indices of
the output and hidden layer. The search direction
of the output layer and the first order approxi-

mation are given as

D= —aJi(n, pa)/OWi= (eo/a) - by (17)

and

ﬁhu=h(5|._:.. WE.+}ln . D}q} _hn""—'[ﬁh]. N vaen Ahm_n]r
(18)

where the i-th element of Ah, is
Ahl_ n= (enfdz) : Wf n" (lhh] r|2)2 M ”S] 11:'|: (19)

By substituting equations (17)-(19) into (16}, we
obtain the learning rate at time n

#nzenf'[ D‘r):' h, +W':, . ﬁhn)}

Ny
=:0'2ﬂ. thHZ +Z |'w?j,nlz N (1"}1;, n2)2 * ||Si.n”2].
= (20)

It shows that the current learning rate is deter-
mined by the current states of the neural network
and that the learning rate is self-adaptive to the
current training pair, not the constant chosen by
the designer. It should be noted that the self-ad-
aptive learning rate is proportional to the vari-
ance of the desired output, If a unit variance is
chosen, i.e., ¢ =1, then one obtains the self-ad-
aptive learning rate for the popular back-propa-
gation algorithm,

3.2.2 Self-Adaptive Leaming Rate for a Muitipte-
QOutput Neural Network
The three layered neural network with the with
muttiple linear outputs denoted by Mn—n,-n, iS
considered, In this case, the sufficient condition
(13) is expressed by

Nz
aliln, ) == 3, [eni(n, g « aNp, podfdpn ] 6 =0
o (21)
and

Ne
P, 1) [P =T3, [6Niln, gn) J0pn [ o
i=1

Nz
- ; [el,i(n. ﬂn} ‘ 62N|{n, ﬂn),"’&zﬂn]fﬂ';z =0,
i (22)
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They are not as simple as the case of the pre
vious single-output network model, To determine
the current learnmg rate. the tirs vrde) apisivi,

mation of the output of the neural network

Ni(SI_ b Wn +ﬂn - Do} =

Wl.) P hn +,(.ln * LD? ne h|\+ W‘,?_ " Ahn ] {23"

is used. The subscript " denotes the index of ne-
urons. Substituting {23} into (21}, the approxi
mate cost function is obtained as

Ivg

i w) =Y te=pin - (DY, - ha + W) . - Ah 3

Lol

{20." (24)

which is a quadratic form that satishies positive
semi-definiteness. In (24}, e . is the i-th model
output error evaluated for the n-th training patr,
It means that the current learning rate is deter-
mined by the minimum position of (24}, Thus, we
obtain the learning rate for the multiple output

neural network model

M!:: (E.-,n)'rmz)'[btn‘h”+w?-“'ahn} f
Y (D¢, ha+ W, - Ahy )*/a)
:: (e, n",JfG!ZJ'[{”h“":?

+ 3 (We L (1=hy D) st ol /o)

Ny
{ S (ei. ‘13}(61:} . i_ Ui hn |i:
0
+ 3 WL (1-h, o - s oW e (28D
A

It shows that the current learning rate is deter-
mined from the normalised output error and the
current states of the neural network. The contri-
bution of each error to the learning rate is related
to the squared value of the normalised error. It is

obviously seen that the current learming rate (25)
i« self-adaptive to the current training pair, not
v eewtant celected by the supervisor of the
network, It s tnteresting to note thal i case ¢l
No= | the learoing rate yields the same result as
the learning rate (20) of the single-output net-
work, 1 all ¢° =1, then the self-adaptive learn
ing rate for the back-propagation aigorithm is
obtained. The weight update scheme based on
the self adaptive learning rate is referred to as
the self-adaptive learning algorithm,

I\V'. Simutation Results and Discussions

To examine the learning algorithms presented
above, two nonlinear systems are considered whi-
«h have different characteristics : the Henan map

and the van der Pol oscillator,

4.] Henon Map
This 15 described by the plane motion in the
delayed coordinate X, =[ X n, X2 ]"

X-j,;!=1.4_?i]_n‘l+0.3Xlln 1« Xin™= Xoop-) {(26)

This motion does not invelve any external input.
As is well known. this system has unpredictable
long-term behaviour [11-14], i.e, random charac-
teristics arising from the deterministic process of
{26). This raises a basic question as to whether the
motion can indeed be predicted by parametric mo-
dels. Farmer and Sidorowich {11] studied this us-
ing linear auto-regressive models and pointed out
their limitations, The use of the neural network
model as a parametric nonlinear model, which pro-
vides the ability of adaptively building up basis fun
ctionals and then reconstructing the model output
from the functionals, will be examined in this sec-
tion,

For the above problem, the sequence of the tra-
ining pairs whose inputs are reconstructed by the
three delayed taps
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T A ca

S0 XK, Xy e Xe T R X g Xne o Xt ._‘]I'
and  ve s =X el X ey
for n =3, -, Ne+2 (Nt=512} (27)

are used to tram the neural network model Aq-po g,
Nt is the record length of the training set. This
training set is used to compare the relative per-
formance between three different algorithms-the
back-propagation, iterative learning and self-adat-
ive learning algorithm, The network weights of
the model! are initialised by the small random vari-
able uniformly distributed in [ —0.01, 0.01] to min-
imise the e{fect of choice of initial weights.

Fig. 4 (a) shows the performance indices (the
mean squares of normalised model errors) of the
first two algorithms during 400 iterations, At the
last iteration. the performance indices are Pidx
{Nt, 400} =9.57 x10~* for the back-propagation alg-
orithm with the constant learning rate (u=0.1}
and P1d x (Nt, 400) =2.75x% 107" for the iterative
algorithm respectively. The latter algorithm is sh-
own to give a more accurate mode} than the for-
mer. The reason is due to the delicate house-
keeping scheme shown in Fig. 3. It reduces the
learning rate of the next iteration whenever the
change of the performance index is not improved
any more,

Fig. 4 (b) shows the trend of the learning rate
over the iteration. This reduction scheme for the
‘fine-tuning’ of the network weights is shown to
be more effective than the constant tearning rate
employed in the back-propagation algorithm, Sp-
ecifically, the steep decrease of the performance
index is seen each modification of the learming
rate in Fig, 4.

From the results above, the learming parameters
(4, C;, and Cq) are shown to participate in the
algorithms. They were predetermined through re-
peated trial-and-error. In practice, much compu-
tation time and expert experience are essential in
finding adequate parameters for each application,

10t Ppidx @: Baék-Pr;paggtion
1 (B): Iterative leaming ]

Iteration
(b) Learning Rate for lterative Learning

Fig. 4. Comparison between the back-propagation al-
gorithm and the iterative learning zlgonthm:
The constant learning rate in the back-propa-
gation algorithm, p=0.1, the control factor of
the performance index, C¢=1.002, and the de-
cay constant of the learning rate, Cs =0.7%43,

{a) Performance Indices

{b) Learning Rate for Iterative Learning

From the argument that the underlying difficulty
in neural network modelling may be resolved if
the learning rate is self-adaptive to the sequence
of training pairs, the learning prolem in the opt-
imisation sense has been reconsidered and the
seif-adaptive learning algorithm has been presen-
ted in Section 3,

The neural network model! for the Henon map-
ping of (26) has a single output. Thus, the self-
adaptive learning rate for each training pair is
computed by the formulation for single output net-
work models, described in (20). Fig. 5 (a) shows
the comparison of the performance between the
iterative learning algorithm and the self-adaptive
one. This indicates that the self-adaptive learning
algorithm provides faster convergence than the
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Fig. 5 Comparison between the terative learming al-
gorithm and the self-adaptive learning algorithm
: The control factor of the performance index Cy
=1.002 and the decay constant of the learning
rate, C4 =0.7943.

{a) Performance Indices (b) Trend of Learning Rate

(c) Performance Index

(d) Desired and Predicted Signal

iterative one, At the final iteration, the perform:
ance index is found to be Py (Ny, 400) =2.62 %
1 * which is only a little different to that of the
terative algonthm (Pidx(Nt, 400 — 275 x Ji ).
Fig. 5 (b) illustrates the trend of the self-adapt-
ive learning rate over the training sequence.

Fig. {¢) shows the performance index when the
network weights obtained after 400 iterations are
used to predict the time series. Any change of
the performance index in this case is not seen
over the time sequence, [t may mean that the es-
timation process of the network weights (at final
tteration) has reached the steady state. The de-
sired and predicted signais are plotted in Fig. 5
(d). Any noticeable differcnce is not observed. It
reveals that the use of the three-layered neural
network model is successful in developing a ma-
thematical model to adequately describe the ‘ch-
aotic’ signal generated by the Henon mapping,

4.2 The van der Pol QOscillator
A periodic forcing input u{t} is introduced to

this systen1. which is described in continuous time

X TRy, Xo=(1—%"} « x: — xy +ult)

u{t) =0.5 sin(1.1t), (28)

The dynamical behaviour of this system manife-
sts a two dimensional ‘quasi-periedic’ motion de-
picted in Fig. 6 (a), which lies on a ‘torus’ in three-
dimensional space {x;, x2, u}. When it is pro-
jected onto the state space {xy, X! the trajectory
i1s confined to an annular-like region and is uni-
formly distributed in this region, as shown in Fig.
6 (b). When the inputs {u,} and the states { x| ,,

X2, ot are measurable at every time interval AT, a

problem of estimating a discrete system represen-
tation, 1.e. the equivalent mapping of the continu-
ous system (28) onto the discrete form,

To approach the problem, the three-layered ne-
ural network model Nip-x-2 IS considered as a non-
linear parametric meodel for the one-step ahead
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(4) Two Dimensional Quasi-Periodic Motion

4

(b) The Trajectory Projected in State
" Space(x;, xu)

Fig. 6. Two dimensional quasi-periodic motion,

state iransition funclion, The sequence of the net
work traming pairs is reconstructed by the threc-
delay taps of inputs ifu.} and outputs X, — [ Xy n,

X. o) sampled at cverv thne interval AT=(.1

5] as

Sico-t Apn. Xoaw K-t Xon- {0 X oy Ui, Ua, Up-. U '_’}?.
and  yo .7 X = Ir Xine)e Xonvl ]

for n= 2 - No+1 (Nt=4096) (29}

As given in (29), the network has two outputs,
Thus, the self-adaptive learning rate needed to up-
date the current network weights for each train-
ing pair is computed by the expression of (25) for
multiple output neural network models. This lea-
ds to straightforward estimation of the nuknown
state transition function X,+,=N(s|.n, W} without
any of the difficulties of finding adequate learning
parameters encountered in the previous example.

Fig. 7 (a) shows an example of the self-adapt-

200 400
Time [s] Iteration
{a) Trend of Self-Adaptive Learning Rate (b) Performance Index
4 - 41 — ™ L
2 | 2
0 0
-2t 24 i !
-4 R . R - N . N
100 200 300 100 200 300
Time [s} Time [s]

{c) Desired and Estimated
Signals{overlapped) : x;(t}

(d) Desired and Estimated
Signals {overlapped) : x2{t)

Fig. 7. Simulation results of the self-adaptive learning algorithm.
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e learning rate evaluated by the expression (25}
fin the trainme ser. During 400 repeated tterat -
ions, this self adaptive learmng s ate i3 used to ¢
turdte Lhe network weights, Fig. 7 (b) shows the
performance achieved using the learning rate, At
the final iteration, the performance index is P
{N:, 400) =2.0x 1077 It is a satisfactory result in
the statistical sense [15) since the chi-square
value {N; X P (Ny, 400}=0.12) is of the order of
10 . This becomes more evident as observed
from the comparison of the desired and estimated
outputs m Fig. 7 (¢) and (d). Aay difference in
this result is invisible,

V. Concluding Remarks

The hasic 1ssue of how to determine the learn:
ing rate {step size) to update the network weigh-
ks 15 addressed and two approaches, referred to as
the iterative learning algorithm and the self-ad-
aptive learning algorithm, are proposed. The iter-
ative learning algorithm gives a safe way of find-
ing the unkown local mimimum of model output
errors by gradually reducing the learning rate.
This approach basically invoives the exploitation
of a local geometrical feature of error surfaces.
The local approximation of the output errors lea-
ds to the self-adaptive learning aigorithm, The ef-
fectiveness of the proposed algorithms is illustr-
ated in the computer simulation results presented
in this paper,

It is interesting to note that the use of the ne-
ural network model above does not need any prior
system knowledge. Moreover, the simple three-
layered nevral network modei ts shown to work
well. The reconstruction of the model nput vec-
tor using the three delayed taps and the determi-
nation of the size of the hidden layer, Nj=3x N,
{Ni=the size of the input vector}, have been
made heuristically, not theoretically. These heu-
ristic rules are shown be successful in the results
above, but further effort to more logically under-

stand them must be rmade in future work.
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