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ABSTRACT

A problem of making a neural network learning self-adaptive to the training set supplied is addressed in this 
paper. This arises from the aspect in choice of an adequate stepsize for the update of the current weigh vectors ac­
cording to the training pairs. Related issues in 나?is attempt are raised and fundamentals in neural network learning 
are introduced. In comparison to the most popular back-propagation scheme, the usefulness and superiority of the 
proposed weight update algorithm are illustr 거 ted by exami ng the identification of unknown nonlinear systems only 
from measurements.

요 약

본 논문에서는 외부로부터 제공되는 학습데이타에 신경회로망의 자기적응화(seif-adaptation)를 이룩하기 위한 접근론이 

기술된다. 이러한 문제점은 신경회로망의 학습이론, 즉 현재의 학습 데이터에 적절한 신경회로망의 가중치 벡터들(weight 
vectors)의 개선 방법론에 기인된다’ 이들에 관련된 문제점들의 이론적 검토와 아울러 신경회로망의 학습에 대한 근본적인 

요소들이 재조명된다. 현재 가장 널리 이용되고 있는 후방 ^^-(back-propagation) 학습법과 비교함으로써, 본 연〒에서 제 

안된 자기적웅 학습법의 유용성과 우위성을 컴퓨터 모의시험 결과로 입증하게 된다*

I. Introd니ction

The use of a 'brain-like' model has been recently 
introduced to 'solve' dynamical systems problems 
in many applied science fields. The model, refer­
red to as a neural network, is becoming a signifi- 
cant way of providing a systematic basis for tack­
ling a variety of problems. Among many possible 
neural network models, much attention has cen­

tred on multi-layered neural networks, which have 
been proven to be very successful in pattern rec­
ognition [1-3]. This is essentially due to the ability 
of (adaptively) approximating analytically unknown 
nonlinear relationship between 'input' patterns and 
desired output' patterns. They provide the major 
motivation in approaching nonlinear systems pro­
blems in what will follow.

Specifically, given a time series of measured 
inputs {un} to, and outputs (yn} from a dynamical 
system, these may be a sequence of paired inputs 
and outputs corresponding to the input patterns 
and the desired output patterns. Looking for 
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these associations is essentially pattern recog­
nition. Thus, it is logical to examine the effec 
i ； veness c)[ ucurai network mod이s m system id 
eiitificcition. In Fig.l, the input training patterns 
:sf, :. i is seen to be reconstructed from the meas­
ured system inputs and output using three delay 
tLips, that is

S[, n " < y：} . Vti i , y；i 2 , U[t . Un - 1 , 니n ~2 *'

In Fig. 1, the neural network is chosen to mat- 
ch the measured system outputs {yn+i} for its in­
puts Si, *={", yn-l, Yn-2, Un, Un-I, Un-사. This 
is a natural representation of discrete nonlinear

tor time index n. (1)

;md the desired mod비 outputs f yd, 3 is directly 
assigned to the measured system outputs

W.疽 y…i. (2)

This reconstruction is referred to as the ^time-in­
variant imbedding method*'  [4]. The three delaye 
tpas in (1) are chosen to 'safely' reconstruct the 
input patterns in neural net work-based dynamic 
system modeling. This choice is due to Takens and 
Maine theorems [5,6] for chaotic systems so as 
to obtain a “smooth" trajectory without any cros­
sing point in reconstructed state space, but they 
may be not necessarily limited to such systems. 
The choice of three delays will be applied to 
deterministic, non-chaotic systems in this study.

-Measurements： Forcing Inputs = [ Un }
System Outputs = (yn ),

-Model to Estimate the One-Step Ahead Output Transition Function.

Desired Model Output:yd’n = yn+i

Fig. 1. Conceptual setup of neural network-based sys­
tem identification model.

dynamical systems, i.e. the one-step ahead output 
transition function

Yn -i- ] *------ * Nn = N(S[.n, W). (3)

Here, a problem to be addressed in this study is 
obvious : How to estimate the set of neural net­
work weigths W well matched with the series of 
training pairs {si, n and ya, ? In Section 2. the 
fundamentals of multi-layered neural networks 
and the difficulties arising in using the popular 
back-propagation and its relatives are highligh­
ted. In Section 3, a new approach, referred to as 
the self-adaptive learning algorithm, is suggested 
to overcome them. In Section 4, simulation results 
and discussions are made in comparison with those 
of the conventional algorithms. Finally, conclud­
ing remarks are summarised.

II. Multi-Layered Neural Network and Learning 

Algorithms

2.1 Multi-Layered Neur히 Networks

In this paper, a three-layered neural network, 
denoted by M*- n「N2 where the subscripts N[. N\ 

and N2 are the size of the input layer, the hidden 
layer and the output layer respectively, is con­
sidered. It perforins a cascaded nonlinear map­
ping of the input vector Si onto the output N as 
shown in Fig. 2.

Input Hidden Output
Layer L&yer_______ Layer

Si 诉牛히tanhz1* 쁘 牛 AN
M------------- ►W------■니

Nonlinear Mapping Linear Mapping

Fig. 2. Three-layered neural network, jVnj-Ni-Nj.

Two weight matrices W1 and W2 corresponding 
to the hidden layer and the output layer partici­
pate in the three-layered neural network. The in­
put Si is projected to the first weight W1 and then 
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the hidden layer output, denoted by the vector h, 
obtained hv PvaluatinR a nonlinear ma ppi ng bo 

unded in l 1, 1J,

h = tanh(W!，&) = [ tanh(w]3 • si), tanh( w； - si),...

tanhfw^, • s,) Tr. (4)

This hidden layer mapping converts the input sp­
ace of dimension Ni onto another bounded space 
with dimension Nj. The functional characteristics 
of this mapping is wholly dependent on the hid 
den layer matrix Wl so that different choices of 
the weight result in different nonlinear function­
als described by the hidden layer st거te h. This is 
quite a useful property m ncur건) network-hased 
nonlinear modelling, which has provided the ma­
jor motivation of exploring the.

Specifically, the second weight matrix W- is 
니sed to reconstruct the output space of dimension 
N2 from the bounded hidden-layer space of size N； 
in the hidden layer. It is the reason for selecting 
a simple linear mapping m the output layer, re 
ferred to as the “weighted-sum” scheme,

N = W'z - h (5)

This operation is one of fundamentals in the eb 
ementary unit of neural networks, called the neu­
ron. This scheme makes some difference in the non- 
linear system modelling problems. When the dy- 
namic range of the desired model output is larger 
than 1.0, the weighted-sum scheme can cover the 
range. But. when the output layer consists of the 
sigmoid unit as in (4) then the maximum range of 
the output is limited m [-L so that this net 
work can not cover the output rang은 of larger 
than 1.0. The linear output model shown in Fig. 3 
is seen to be the more plausible model for non' 
linear dynamical systems representation.

The above three-layered neural network basi- 
cally performs the two-stage mapping : the bound' 
ed nonlinear mapping of the input state onto the 

hidden layer state and the linear mapping to re 
c.onstiuct. I he network output from the bounded

•:如龄 J hihc：' 心 c；xp]oited ! <.■ estimate ■ 

an unknown nonlinear relationship between the 
measured inputs and outputs for unknown non­
linear dvnamical systems. Here one point is obvp 
ous that, the bounded hidden layer state (4) is un 
derstood to be basis functionals for the recon­
struction of the network output and that their 
functional characteristics can be determined by 
selecting the hidden layer weight matrix. The 
network output is seen to be reconstiucted by the 
weighted-sum of the basis functionals using the 
weight, matrix of the output layer. This two-stage 
nonlinear mapping leads to the estimation of an 
unknown discrete-time representation imbedded 
in nonlinear system measurements. It is apparent 
that a key issue here is how to estimate the set 
of neural network weights adequate for a series 
of measurements of nonlin。거r dynamical systems. 
It is referred to as the neural network learning al­
gorithm, which is further addressed in the rest of 
this section.

2.2 Back'Propagation Algorithm and Its Relatives
Most learning laogrithms for m니ti l거yered neur­

al networks are based on the geometrical features 
of output errors between the desired and current 
outputs of the neural networks. Unfortunately, 
the errors of the multi-layered neural networks 
are non-linearly dependent on the weights. This 
does not always enable us easily to see such geo 
metrical features as local minima or a global mini­
mum. However, the simplest scheme, that is the 
steepest descent method, has been widely 니sed to 
estiniate the weight as, for example, m the work 
of Nuguen and Widrow [7] and Narendra and Par- 
thasaraty [81. It is conceptually identical to the 
back-propagation 지gorithm, introduced by Rum- 
melhart et al. [9]. Given the squared value of the 
model output error

Jn = * llyd,n-N(st.„, W„)ir'. (6) 
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die weiglit update scheme of the back-propagation 
algorithm is described by

W,，!二 Wn + 卩• Dn = Wn 一 卩-SJr&Wn. ⑺

A positive constant 卩 is the learning rate (step 
size) and Dn denotes the search direction.

At the beginning of the research, the back-pro­
pagation algorithm was chosen to understand the 
fundamentals of training the above three layered 
neural network for nonlinear system modelling. 
Two well-known systems-the Van der Pol oscil­
lator and the Henon map-were chosen for study. 
When the weight 니pda坨 scheme (7) is used to 
identify nonlinear systems form measurements, 
several limitations arise (refer to reference [10] 
for detailed information). Important factors first 
encountered from these attempts are as follows : 
the initially chosen weights Wo and the learning 
rate 卩 for each application, referred to as the 
neural network training factors, play critical roles 
in the asymptotic accuracy of chosen neural net^ 
work models for system representation and their 
convergence rate in estimating the adequate 
weight vectors.

An intuitive weight estimation scheme was fir- 
st used in the research, referred to as the iterat-

Fig. 3. Schematic diagram of the iterative learning al­
gorithm :Cf = the control factor of the perform­
ance factor, Cd = the decay constant of the re­
duction rate, itn = the iteration index, and 岗比 

=the learning rate (step-size) at iteration index 
itn.

ive learning algorithm. Fig. 3 shows the concep- 
tual set-up of the algorithm. It involves a delicate 
'house-keeping' scheme for choosing the initial 
weights Wo. !tn for each iteration, searching the be­
st fit weight set, and decreasing the current learn­
ing rate.

Fig. 3. Schematic diagram of the iterative le­
arning algorithm: Cf = the control factor of the 
performance factor, Cd —the decay constant of 
the reduction rate, itn = the iteration index, and 
印tn = the learning rate (step-size) at iteration in­
dex itn.

In Fig. 3, the performance index denoted by 
PidxC) is defined by the mean squared value of 
normalised errors at the time index n

1 n N2
Pldx(n, itn) £ {£ M,i(n)-N(n)阳/们2}⑻

n t=i i기

where 次 denotes the variance of the i-th desired 
output and 'itn' is the iteration index. Specific 
cally, the learning rate /z!tn+i for the next iter­
ation is determined by the comparison between 
the current performance index Rdx(Nt, in) and 
나le reference value CfP1(b：(n, itn — 1), 난)at is the 
previous one multiplied by the control factor Cf 
(slightly larger than one, e.g. Cf= 1.002). If Pldx 
(Nt, itn) 그CfRdx(n, itn—1), 나len the learning 
rate is r이atively decreased by the decay factor 
Cd< 1. Of cause, if the decrease mechanism of 
the learning rate is chosen to be inactive in the 
above house-keeping scheme, the iterative algor­
ithm becomes identical to the back-propagation 
algorithm.

The starting weight Wo at 나]e first iteration is 
initialised by a 'small' random variable uniformly 
distributed in [ —0.01, 0.01] so as to minimise 나]e 
effect of choice of the initial weights on the per­
formance of the learning algorithm. Moreover, 
the initial learning rate is assigned by a large 
value in order to obtain a 'fast' searching at 나le 
beginning of training stages. Therefore, the iter­
ative learning scheme shown in Fig, 3 can reduce 
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at least the amount of labour needed to select the 
adequate network training factors-the initial we 
ight and the learning rate-for each 걵pphcaiion 
through repeated trial-and errors.

The 拒거ruing rate in this learning algorithm gr­
adually decreases whenever the performance is no 
longer improved. This scheme seems to be safer 
for 'fin切tuning' of the network weights than the 
global constant case in the back-propagation or 
its relatives ［7-9〕. The smaller learning rate is in­
tuitively understood to be effective when the est­
imated weights are close to the 'minimal' con­
dition. The geometrical feature in this specific 
case may be seen by a quadratic approximation of 
the cost function. This will be further addressed 
in the following sections.

ID. Self-Adaptive Learning Algori하im

3.1 Local Minimum and Self-Adaptive Learning Rate
The back-propagation algorithm and the iterat­

ive learning algorithm above consist of two basic 
strategies : the search direction and the step-size 
for the weight update. To improve the searching 
direction is a multi-dimensional search problem 
while the determination of the step-size is an one­
dimensional one. The latter problem is much sim­
pler than the former in a sense of optimisation (min­
imisation/ maximisation) ［ 15 ］. Howeverm little is 
known about this in the neural network field. Sp­
ecifically, this study considers the step-size (learn­
ing rate) as an one-dimensional optimisation vari­
able which will be determined for each training 
pair. Given the squared value of the normalised 
error attempted to be minimised

1 、2" E mnrilNJri네"次 (9)
L i=l

then the search direction is given as the steepest 
descent direction of (9) with respect to the cur­
rent weight

Dn= - (10)

The normalised form (7) is chosen in this resear­
ch due to the advantages that it can be used to 
test not only the performance of a trained neural 
network but also to calculate the chi-squared 
value for the goodness-of-fit of the estimated we­
ight. Given the current learning rate (to be de 
termined) and the current search direction (10), 
the weight is updated in the same way as the 
above algorithm

W"i = Wn+s - D"=WLS • ajn/aWn. (11)

To approach the problem of determining the 
current learning rate 叽 난］is paper considers an 
intermediate cost function which is obtained by 
substituting (11) into (9)

1 N2
Ji(n,佝)=；V &. Jn) — 叫 + 伽• DQ F/g? 

L i = l
］、2

="E 旧(n, /in)/o子时 (12)
Z i = l

It is noted from (12) that the learning r서te /zn can 
be obtained m such a way to minimise the inter­
mediate cost function. This 아lows that the cur- 
rent learning rate can be determined from the 'lo­

cal, minimum of the intermediate cost function Ji 
(n, /zn) with respect to the unknown ^n. This con­
dition may be described by

0/8印=0 and 旳而，印)濬网乏0.

(13)

This is the sufficient condition for the (local) min­
imum of the cost function with a 'locally bowl- 
like' geometrical shape and is used to determine 
the unknown learning rate. Here one point is ob­
vious that the learning rate is adaptively deter­
mined from 나］e current training pair {si. n, ya, n) 
and 나］e current network weights Wn. To empha­
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sise this fe＜：iture, it. is referred to as the 's이f- 
ve' lea mi ng rate.

3.2 Self-Adaptive Learning Rates
3.2.1 Self-Adaptive Learning Rate for a Single-Out- 

put Neural Network
First, a single-output neural network denoted 

by 应匕 Nj - j is considered. In this case N2 = l in 
equation (12). By applying the first sufficient con­
dition of (13) to the cost function (12), we obtain

ei (n, //：)- 0 and SN(n,伽)应府=0 (14)

The first equation is easily shown to satisfy the 
positive sem-definiteness of (13) since

I(n,妃人忒四="N(n,四)/再如护AO (15)

This is sufficient to determine the current learn­
ing rate. But, semi-definiteness is not seen from 
the second equation of (14). Thus, the learning 
rate is obtained by solving the following equation 
which is approximated to the first order

ei(n,妃=0=yd.n—〔恥 + 如以]」1($", W*+ 卩n「D；)

二On — Ahn】 (16)

where en = [Yd, n —、W*  - h(si, n, W：)], the model 
output error

W„ and Wj = the weights of the output and 
hidden layers,

Dn and D] = the search directions of the out­
put and hidden layer weight, 

hn = the output of the hidden layer,
and Ahn = the first order approximation of the 

hidden layer output.
The superscripts 'o' and T denote the indices of 
the output and hidden layer. The search direction 
of the output layer and the first order approxi­
mation are given as

D《=一。J【(n,印)/8WX= (en/(T2) - hn (17)

and

Ahn=h(SL3, Wn+/ln - D») - hn= [Ahl,n, 사川5 卩

(18)

where the i-th element of Ahn is

Ah(, n= (en/(T2) • W-, n ■ (1-hj. n2)2 - hsi, n住 (19)

By substituting equations (17)-(19) into (16), we 
obtain the learning rate at time n

/m = en/[D, hn+W「Ahn)]

N,

= a7Lllhn«2+E IW?Jin|2 . (1-h, n2)2- II Si.nl；2 ]. 
尸' (20)

It shows that the current learning rate is deter­
mined by the current states of the neural network 
and that the learning rate is self-adaptive to the 
current training pair, not the constant chosen by 
the designer. It should be noted that the self-ad­
aptive learning rate is proportional to the vari­
ance of the desired output. If a unit variance is 
chosen, i.e., o-2 =1, then one obtains the self-ad­
aptive learning rate for the popular back-propa­
gation algorithm.

3.2.2 Self-Adaptive Learning Rate for a M니tiple- 

Output Neural Network

The three layered neural network with the with 
multiple linear outputs denoted by is
considered. In this case, the sufficient condition 
(13) is expressed by

N2
8h(I】,心)伽 n=- E [ei,血,卩 n) - 8Ni(H,而)/以 n]/们2 =。

i - 1

(21) 
and

n2
52Ji(n,场])/洗拍=L [8Ni(n,伽)/初nF/次 

i=l

Na

- L [eij(n, /in) - 序NJn, 伽)/成伽] /o? 느 0.
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They are not as simple as the case of the pre 
vious single output network model. To determine 
the current learning rate, rhe firs! ordci apptga； 

mation of the output of the neural network

N|(S], n. Wn +“n - Dn)二

W《n - hn + 印• L Df n ■ hn + W? r, ■ Ahn ] (23)

is used. The subscript T denotes the index of ne 
urons. Substituting (23) into (21), the approxi 
mate cost function is obtained as

Na
ji(n,心)二 E 足i.L“n - [ D； tl - h” + W；- Ahn j H 

! 1

/2 次 (24)

which is a quadratic form that satisfies positive 
semi-definiteness. In (24), ei, > is the i-th model 
output error evaluated for the n-th training pair. 
It means that the current learning rate is deter 
mined by the minimum position of (24). Thus, we 
obtain the learning rate for the multiple output 
ne나!a network model

(e”/62).[D"hn + W《M Ahn] /
i -1

E [D?.n-hn + W?.n-AhJ2/^,2 
j i 
n2

二£(5//那)•[세h混

Ni
+ E • (l-hLn2)2 - 10侦2}/狎]

J F
N2

/E(如若仃)•[打hE
! - 1

+ E *(1-hj.n2)2 - )1 S], nil2) / O ? Y ^5)
j〜1

It shows that the current learning rate is deter­
mined from the normalised output error and the 
current states of the neural network. The contri­
bution of each error to the learning rate is rel거ted 
to the squared value of the normalised error. It is 

obviously seen that the current learning rate (25) 
熟 self-adaptive to the current training pair, not 
:he c<>nst：an+ selected by the supervisor of the 
network. It is interesting to note that m case of 
N°= 1 the learning rate yields the same result as 
the learning rate (20) of the single-output net­
work. If allthen the self-adaptive learn­
ing rate for the back-propagation algorithm is 
obtained. The weight update scheme based on 
the self-adaptive learning rate is referred to as 
the self-adaptive learning algorithm.

IV. Sim나lation Results and Discussion응

To examine the learning algorithms presented 
above, two nonlinear systems are considered whi­
ch have different characteristics : the He non map 
and the van der Pol oscillator.

4.1 Henon Map
This is described by the plane motion in the 

delayed coordinate xn — [ xi, n, x2. n ]T

X?, n = L4 — Xi.『+ 0.3 Xl n ■ 1 , Xi, n = X2, !t - J (26)

This motion does not involve 거ny external input. 
As is well known, this system has unpredictable 
long-term behaviour [11-141, i.e. random charac­
teristics arising from the deterministic process of 
(26). This raises a basic question as to whether the 
motion can indeed be predicted by parametric mo­
dels. Farmer and Sidorowich [11] studied 나lis us­
ing linear auto-regressive models and pointed out 
나leir limitations. The use of the neural network 
model 거s a parametric nonlinear model, which pro­
vides the ability of adaptively building up basis fun 
ctionals and then reconstructing the model output 
from the functionals, will be examined in this sec­
tion.

For the above problem, the sequence of the tra­
ining pairs whose inputs are reconstructed by the 
three delayed taps
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S" " 向 j f . Xr」：=X"' x …；，XL nf, XL「 

and y(t "=次，x】，n 十 i)

for n = 3, Nt + 2 (Nt = 512) (27)

are used to train the neural network model jV4-i . 

Nt is the record length of 나】e training set. This 
training set is used to compare the relative per­
formance between three different algonthms4he 
back-propagation, iterative learning and self-adat- 
ive learning algorithm. The network weights of 
the model are initialised by the small random vari­
able uniformly distributed in [ —0.01, 0.01] to min­
imise the effect of choice of initial weights.

Fig. 4 (a) shows the performance indices (the 
mean squares of normalised model errors) of the 
first two algorithms during 400 iterations. At the 
last iteration, the performance indices are Pidx 
(Nt, 400)=9.57x1(广3 for the back-propagation alg­
orithm with the constant learning rate (乂 = 0.1) 
and Pidx (Nt, 400) =2.75X 10'3 for the iterative 
algorithm respectively. The latter algorithm is sh­
own to give a more accurate model than the for­
mer. The reason is due to the delicate house­
keeping scheme shown in Fig. 3. It reduces the 
learning rate of the next iteration whenever the 
change of the performance index is not improved 
any more.

Fig. 4 (b) shows the trend of the learning rate 
over the iteration. This reduction scheme for the 
'fine-timing' of the network weights is shown to 
be more effective than the constant learning rate 

employed in the back-propagation algorithm. Sp­
ecifically, the steep decrease of the performance 
index is seen each modification of the learning 
rate in Fig. 4.

From the results above, the learning parameters 
(卩，Cf, and Cd) are shown to participate in the 
algorithms. They were predetermined through re­
peated trial-and-error. In practice, much compu­
tation time and expert experience are essential in 
finding adequate parameters for each application.

Iteration
(a) Performance Indices

(b) Learning Rate for Iterative Learning

Fig. 4. Comparison between the back-propagation al­
gorithm and the iterative learning algorithm: 
The constant learning rate in the back-propa­
gation algorithm,月=0丄 the control factor of 
the performance index, Cf — 1.002, and the de­
cay constant of the learning rate, Cd = 0.7943,

(a) Performance Indices
(b) Learning Rate for Iterative Learning

From the argument that the underlying difficulty 
in neural network modelling may be resolved if 
the learning rate is self-adaptive to the sequence 
of training pairs, the learning prolem in the opt­
imisation sense has been reconsidered and the 
self-adaptive learning algorithm has been presen­
ted in Section 3.

The neural network model for the Henon map­
ping of (26) has a single output. Thus, the self- 
adaptive learning rate for each training pair is 
computed by the formulation for single output net*  
work models, described in (20). Fig. 5 (a) shows 
the comparison of the performance between the 
iterative learning algorithm and the self-adaptive 
one. This indicates that the self-adaptive learning 
algorithm provides faster convergence than the
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Iteration
(a) Performance Indices

-i
10

0 250 500
Time sequence

(b) Trend of Learning Rate

Time sequence 
(c) Performance Index

(d) Desired and Predicted Signal

Fig. 5. Comparison between the iterative learfiing al­
gorithm and the self-adaptive learning algorithm 
:The control factor of the performance index Cf 
= 1.002 and the decay constant of the learning 
rate, Cd = 0.7943.

(a) Performance Indices (b) Trend of Learning Rate
(c) Performance Index
(d) Desired and Predicted Signal

iterative one. At the final iteration, the perform 
ance index is found to be F\dx(Nt, 400) = 2.62 x 
10"3. which is only a little1 different to that of the 
iteiative algorithm (Pidx(Nt, 400) - 2.75 x 1(.) ■'). 
Fig. 5 (b) illustrates the trend of the self-adapt- 
iv.e learning rate over the training sequence.

Fig. (c) shows th욘 performance index when the 
network weights obtained after 400 iterations are 
used to predict the time series. Any change of 
the perform거nee index in this case is not seen 
over the time sequence. It may mean that the es­
timation process of the network weights (at final 
iteration) has reached the steady state. The de­
sired and predicted signals are plotted in Fig. 5 
(d). Any noticeable difference is not observed. It 
reveals that the use of the three-layered neural 
network model is successful m developing a ma­
thematical model to adequately describe the Ch­
aotic' signal generated by the He non mapping.

4.2 The van der Pol Oscillator

A periodic forcing input u(t) is introduced to 
this system, which is described in continuous time

&=加, 又2 =(1一乂『) • X? — X] +니(t)

u(t) =().5 sin(l.lt). (28)

The dynamical behaviour of this system manife­
sts a two dimensional tquasi-periodic, motion de­
picted in Fig. 6 (a), which lies on a 'torus' in three- 
dimensional space {xi, x2, ui. When it is pro­
jected onto the state space {xi, x2l the trajectory 
is confined to an annular-like region and is uni­
formly distributed in this region, as shown in Fig. 
6 (b). When the inputs {un J and the states {xL n, 
x2. n 1 are measurable at every time interval AT. a 

problem of estimating a discrete system represen­
tation, i.e. the equivalent mapping of the continu­
ous system(28) onto the discrete form.

To approach the problem, the three-iayered ne­

ural network model jVio-30-2 is considered as a non­
linear parametric model for the one-step ahead
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st.?ite transition function. The sequence of the net 
work training pairs is reconstructed by the three- 
delay taps of inputs "盘 and outputs xl [ n, 

x2. n I'1 sampled at every time interval AT = 0,1 
i_s.] as

S|. ” = ■ X1, n ,况.ri, Xi u - I，X^.n- I, X?. n :、如 + ],由，, Un - 2 ] *

and y」.f! - x…i = L x2. 1

for 匸i=2,…，N + l (Nt-4096) (29)

As given in (29), the network has two outputs. 
Thus, the self-adaptive learning rate needed to up­
date the current network weights for each train­
ing pair is computed by the expression of (25) for 
multiple output neural network models. This lea­
ds to straightforward estimation of the nuknown 
state transition function Xn+1 = N(S", W) without 
any of the difficulties of finding adequate learning 
parameters encountered in the previous example.

Fig. 7 (a) shows an example of the self-adapt­

(a) Trend of S이f-Adaptive Learning Rate (b) Performance Index

Time [s]
(c) Desired 거nd Estimated

Signals(overlapped) :x、(t) Signals (overlapped) : x2(t)

Fig. 7. Sim니at】on results of the self-adaptive learning algorithm.
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ive learning rate evaluated by the expression (25) 
the training set. During 400 repeated iterat - 

ions, this self adaptive learning rate is used to es­
timate the network weights. Fig. 7 (b) shows the 
performance achieved using the learning rate. At 
the final iteration, the performance index is P!(ix 
(Nt, 400) =3J)xl()f. It is a satisfactory result in 
the statistical sense [15] since the chi-square 
value (NiXPm(Nt, 400) = 0.12) is of 나！。order of 
10-1. This becomes more evident as observed 
from the comparison of the desired and estimated 
outputs in Fig. 7 (c) and (d). Any difference in 
this result is invisible.

V. Concluding Remarks

The basic iss나e of how to determine the learn 
mg rate (step size) to update the network weigh­
ts is addressed and two approaches, referred to as 
the iterative learning algorithm and the self-ad­
aptive learning algorithm, are proposed. The iter­
ative learning algorithm gives a safe way of find­
ing the unkown local minimum of model output 
errors by gradually reducing the learning rate. 
This approach basically involves the exploitation 
of a local geometrical feature of error surfaces. 
The local approximation of the output errors lea­
ds to the self-adaptive learning algorithm. The ef 
fectiveness of the proposed algorithms is illustr­
ated in the computer simulation results presented 
in this paper.

It is interesting to note that the use of the ne­
ural network model above does not need any prior 
system knowledge. Moreover, the simple three- 
iayered neural network model is shown to work 
well. The reconstruction of the model input vec­
tor using the three delayed taps and the determi­
nation of the size of the hidden layer, Ni = 3xN【 

(Ni = the size of the input vector), have been 
made heuristically, not theoretically, These heu­
ristic rules are shown be successful m the results 
above, but further effort to more logically under­
stand them must be made m future work.
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