• Title/Summary/Keyword: Back Propagation

Search Result 1,467, Processing Time 0.03 seconds

Performance Evaluation of Linear Regression, Back-Propagation Neural Network, and Linear Hebbian Neural Network for Fitting Linear Function (선형함수 fitting을 위한 선형회귀분석, 역전파신경망 및 성현 Hebbian 신경망의 성능 비교)

  • 이문규;허해숙
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.3
    • /
    • pp.17-29
    • /
    • 1995
  • Recently, neural network models have been employed as an alternative to regression analysis for point estimation or function fitting in various field. Thus far, however, no theoretical or empirical guides seem to exist for selecting the tool which the most suitable one for a specific function-fitting problem. In this paper, we evaluate performance of three major function-fitting techniques, regression analysis and two neural network models, back-propagation and linear-Hebbian-learning neural networks. The functions to be fitted are simple linear ones of a single independent variable. The factors considered are size of noise both in dependent and independent variables, portion of outliers, and size of the data. Based on comutational results performed in this study, some guidelines are suggested to choose the best technique that can be used for a specific problem concerned.

  • PDF

A Study of Radio Signal Tracking using Error Back Propagation (오차 역전파 알고리즘을 이용한 전파신호 추적 연구)

  • 김홍기;김현빈;신욱현;이원돈
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.226-229
    • /
    • 2001
  • Radio signal tracking has been developed especially in military as well as in other industries. It is necessary that an adaptive system trace the signal varying its PRI and frequency. In this paper we proposed a system to adapt various PRI and frequency using a neural network model named Error Back Propagation. Fist we prepared learning data by separating signal into time intervals and did some experiments with the teaming data. We found that the system had good effectiveness in tracing varying PRI and frequency signals.

  • PDF

Adaptive Control of Non-linear Dynamic System using Neural Network (신경 회로망을 이용한 비선형 동적 시스템의 적응 제어)

  • Jang, Seong-Whan;Cho, Hyeon-Seob;Kim, Ki-Cheol;Choi, Bong-Shik;Yu, In-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.953-955
    • /
    • 1995
  • Studied on identification of nonlinear system with unknown variables and adaptive control were successful. We need a mathmatical model when control a dynamic system using adaptive control technique, but it is very difficult due to its nonlinearity. In this paper, we described about performance improvement of error back-propagation algorithm and learning algorithm of non-linear dynamic system. We examined the proposed back-propagation learn algorithm for through an experiment.

  • PDF

Cable Color Recognition Using a Back-Propagation Neural Network (역전파 신경망을 이용한 케이블의 색깔인식)

  • Lee, Moon-Kyu;Yun, Chan-Kyun
    • IE interfaces
    • /
    • v.8 no.1
    • /
    • pp.5-13
    • /
    • 1995
  • Automated vision inspection has become a vital part of computer related industries. Most of the existing inspection systems mainly utilize black and white images. In this paper, we consider an application of automated vision inspection in which cable color has to be recognized in order to detect the quality status of assembled wire harness. A back-propagation neural network is proposed to classify seven different cable colors. To represent a single point in image space, we use the ($L^*,\;a^*,\;b^*$) model which is one of commonly used color-coordinate systems in image processing. After training the neural network with ($L^*,\;a^*,\;b^*$) data obtained from color image, we tested its performance. The results show that the neural network is able to classify cable colors with high performance.

  • PDF

Back-Propagation Algorithm through Omitting Redundant Learning (중복 학습 방지에 의한 역전파 학습 알고리듬)

  • 백준호;김유신;손경식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.9
    • /
    • pp.68-75
    • /
    • 1992
  • In this paper the back-propagation algorithm through omitting redundant learning has been proposed to improve learning speed. The proposed algorithm has been applied to XOR, Parity check and pattern recognition of hand-written numbers. The decrease of the number of patterns to be learned has been confirmed as learning proceeds even in early learning stage. The learning speed in pattern recognition of hand-written numbers is improved more than 2 times in various cases of hidden neuron numbers. It is observed that the improvement of learning speed becomes better as the number of patterns and the number of hidden numbers increase. The recognition rate of the proposed algorithm is nearly the same as that conventional method.

  • PDF

A neural network model to assess the hysteretic energy demand in steel moment resisting frames

  • Akbas, Bulent
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.177-193
    • /
    • 2006
  • Determining the hysteretic energy demand and dissipation capacity and level of damage of the structure to a predefined earthquake ground motion is a highly non-linear problem and is one of the questions involved in predicting the structure's response for low-performance levels (life safe, near collapse, collapse) in performance-based earthquake resistant design. Neural Network (NN) analysis offers an alternative approach for investigation of non-linear relationships in engineering problems. The results of NN yield a more realistic and accurate prediction. A NN model can help the engineer to predict the seismic performance of the structure and to design the structural elements, even when there is not adequate information at the early stages of the design process. The principal aim of this study is to develop and test multi-layered feedforward NNs trained with the back-propagation algorithm to model the non-linear relationship between the structural and ground motion parameters and the hysteretic energy demand in steel moment resisting frames. The approach adapted in this study was shown to be capable of providing accurate estimates of hysteretic energy demand by using the six design parameters.

A Study on the Decision Feedback Equalizer using Neural Networks

  • Park, Sung-Hyun;Lee, Yeoung-Soo;Lee, Sang-Bae;Kim, Il;Tack, Han-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.474-478
    • /
    • 1998
  • A new approach for the decision feedback equalizer(DFE) based on the back-propagation neural networks is described. We propose the method of optimal structure for back-propagation neural networks model. In order to construct an the optimal structure, we first prescribe the bounds of learning procedure, and the, we employ the method of incrementing the number of input neuron by utilizing the derivative of the error with respect to an hidden neuron weights. The structure is applied to the problem of adaptive equalization in the presence of inter symbol interference(ISI), additive white Gaussian noise. From the simulation results, it is observed that the performance of the propose neural networks based decision feedback equalizer outperforms the other two in terms of bit-error rate(BER) and attainable MSE level over a signal ratio and channel nonlinearities.

  • PDF

Wavelet Neural Network Based Indirect Adaptive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Choi, Jong-Tae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.118-124
    • /
    • 2004
  • In this paper, we present a indirect adaptive control method using a wavelet neural network (WNN) for the control of chaotic nonlinear systems without precise mathematical models. The proposed indirect adaptive control method includes the off-line identification and on-line control procedure for chaotic nonlinear systems. In the off-line identification procedure, the WNN based identification model identifies the chaotic nonlinear system by using the serial-parallel identification structure and is trained by the gradient-descent method. And, in the on-line control procedure, a WNN controller is designed by using the off-line identification model and is trained by the error back-propagation algorithm. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic nonlinear systems.

System Idenification of an Autonomous Underwater Vehicle and Its Application Using Neural Network (신경회로망을 이용한 AUV의 시스템 동정화 및 응용)

  • 이판묵;이종식
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.131-140
    • /
    • 1994
  • Dynamics of AUV has heavy nonlinearities and many unknown parameters due to its bluff shape and low cruising speed. Intelligent algorithms, therefore, are required to overcome these nonlinearities and unknown system dynamics. Several identification techniques have been suggested for the application of control of underwater vehicles during last decade. This paper applies the neural network to identification and motion control problem of AUVs. Nonlinear dynamic systems of an AUV are identified using feedforward neural network. Simulation results show that the learned neural network can generate the motion of AUV. This paper, also, suggest an adaptive control scheme up-dates the controller weights with reference model and feedforward neural network using error back propagation.

  • PDF

Flashover Prediction of Polymeric Insulators Using PD Signal Time-Frequency Analysis and BPA Neural Network Technique

  • Narayanan, V. Jayaprakash;Karthik, B.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1375-1384
    • /
    • 2014
  • Flashover of power transmission line insulators is a major threat to the reliable operation of power system. This paper deals with the flashover prediction of polymeric insulators used in power transmission line applications using the novel condition monitoring technique developed by PD signal time-frequency map and neural network technique. Laboratory experiments on polymeric insulators were carried out as per IEC 60507 under AC voltage, at different humidity and contamination levels using NaCl as a contaminant. Partial discharge signals were acquired using advanced ultra wide band detection system. Salient features from the Time-Frequency map and PRPD pattern at different pollution levels were extracted. The flashover prediction of polymeric insulators was automated using artificial neural network (ANN) with back propagation algorithm (BPA). From the results, it can be speculated that PD signal feature extraction along with back propagation classification is a well suited technique to predict flashover of polymeric insulators.