• Title/Summary/Keyword: Bacillus velezensis

Search Result 55, Processing Time 0.026 seconds

Mass Cultivation and Characterization of Multifunctional Bacillus velezensis GH1-13 (복합기능성 Bacillus velezensis GH1-13 균주의 대량배양 최적화 및 특성)

  • Park, Jun-Kyung;Kim, JuEun;Lee, Chul-Won;Song, JaeKyeong;Seo, Sun-Il;Bong, Ki-Moon;Kim, Dae-Hyuk;Kim, Pyoung Il
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.1
    • /
    • pp.65-76
    • /
    • 2019
  • Bacillus genus are found abundantly in various sites and their secondary metabolites were used as potential agents in agriculture, notably plant growth promoting and bio-control. The objective of this study was to develop the culture conditions of GH1-13 strain including higher cell growth, stable endospore-forming and enhancement of potential agents which are related with plant growth promoting and phytopathogen suppression. The optimal carbon and nitrogen sources were determined by glucose and soy bean flour, respectively, then resulted in $7.5{\times}10^9cells/mL$, $6.8{\times}10^9\;endospore\;cells/mL$ and sporulation yield of 90% after 30 h cultivation in 500 L submerged fermenter at $37^{\circ}C$, pH 7.0. Cells and cell-free supernatant of GH1-13 strains showed the potent antifungal activity against phytopathogenic fungi of Colletotrichum gloeosporioides. It was also confirmed that indole-3-acetic acid (IAA) production of GH1-13 strain was greatly increased by addition of 0.3% tryptophan.

Biological Efficacy of Endophytic Bacillus velezensis CH-15 from Ginseng against Ginseng Root Rot Pathogens (인삼내생균 Bacillus velezensis CH-15의 인삼뿌리썩음병 방제 효과)

  • Kim, Dohyun;Li, Taiying;Lee, Jungkwan;Lee, Seung-Ho
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Ginseng is an important medicinal plant cultivated in East Asia for thousands of years. It is typically cultivated in the same field for 4 to 6 years and is exposed to a variety of pathogens. Among them, ginseng root rot is the main reason that leads to the most severe losses. In this study, endophytic bacteria were isolated from healthy ginseng, and endophytes with antagonistic effect against ginseng root rot pathogens were screened out. Among the 17 strains, three carried antagonistic effect, and were resistant to radicicol that is a mycotoxin produced by ginseng root rot pathogens. Finally, Bacillus velezensis CH-15 was selected due to excellent antagonistic effect and radicicol resistance. When CH-15 was inoculated on ginseng root, it not only inhibited the mycelial growth of the pathogen, but also inhibited the progression of disease. CH-15 also carried biosynthetic genes for bacillomycin D, iturin A, bacilysin, and surfactin. In addition, CH-15 culture filtrate significantly inhibited the growth and conidial germination of pathogens. This study shows that endophytic bacterium CH-15 had antagonistic effect on ginseng root rot pathogens and inhibited the progression of ginseng root rot. We expected that this strain can be a microbial agent to suppress ginseng root rot.

Biodegradation and Removal of PAHs by Bacillus velezensis Isolated from Fermented Food

  • Sultana, Omme Fatema;Lee, Saebim;Seo, Hoonhee;Al Mahmud, Hafij;Kim, Sukyung;Seo, Ahyoung;Kim, Mijung;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.999-1010
    • /
    • 2021
  • Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment. They are highly toxigenic and carcinogenic. Probiotic bacteria isolated from fermented foods were tested to check their ability to degrade and/or detoxify PAHs. Five probiotic bacteria with distinct morphologies were isolated from a mixture of 26 fermented foods co-cultured with benzo(a)pyrene (BaP) containing Bushnell Haas minimal broth. Among them, B. velezensis (PMC10) significantly reduced the abundance of BaP in the broth. PMC10 completely degraded BaP presented at a lower concentration in broth culture. B. velezensis also showed a clear zone of degradation on a BaP-coated Bushnell Haas agar plate. Gene expression profiling showed significant increases of PAH ring-hydroxylating dioxygenases and 4-hydroxybenzoate 3-monooxygenase genes in B. velezensis in response to BaP treatment. In addtion, both live and heat-killed B. velezensis removed BaP and naphthalene (Nap) from phosphate buffer solution. Live B. velezensis did not show any cytotoxicity to macrophage or human dermal fibroblast cells. Live-cell and cell-free supernatant of B. velezensis showed potential anti-inflammatory effects. Cell-free supernatant and extract of B. velezensis also showed free radical scavenging effects. These results highlight the prospective ability of B. velezensis to biodegrade and remove toxic PAHs from the human body and suggest that the biodegradation of BaP might be regulated by ring-hydroxylating dioxygenase-initiated metabolic pathway.

Increased Production of γ-Aminobutyric Acid from Brewer's Spent Grain through Bacillus Fermentation

  • Tao Kim;Sojeong Heo;Hong-Eun Na;Gawon Lee;Jong-Hoon Lee;Ji-Yeon Kim;Do-Won Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.527-532
    • /
    • 2023
  • Brewer's spent grain (BSG) is a waste product of the beer industry, and γ-aminobutyric acid (GABA) is a physiologically active substance important for brain and neuron physiology. In this study, we used the bacterial strains Bacillus velezensis DMB06 and B. licheniformis 0DA23-1, respectively, to ferment BSG and produce GABA. The GABA biosynthesis pathways were identified through genomic analysis of the genomes of both strains. We then inoculated the strains into BSG to determine changes in pH, acidity, reducing sugar content, amino-type nitrogen content, and GABA production, which was approximately doubled in BSG inoculated with Bacillus compared to that in uninoculated BSG; however, no significant difference was observed in GABA production between the two bacterial strains. These results provide the experimental basis for expanding the use of BSG by demonstrating the potential gain in increasing GABA production from a waste resource.

Isolation of 2 Bacillus Strains with Strong Fibrinolytic Activities from Kimchi

  • Yao, Zhuang;Meng, Yu;Le, Huong Giang;Lee, Se Jin;Jeon, Hye Sung;Yoo, Ji Yeon;Afifah, Diana Nur;Kim, Jeong Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.439-446
    • /
    • 2020
  • Two Bacillus strains, K3 and K208, both demonstrating strong fibrinolytic activities were isolated from Kimchi, a traditional Korean preparation of fermented vegetables. Isolates were subjected to various molecular biology based identification methods including RAPD-PCR and identified as B. subtilis and B. velezensis, respectively. Tryptic soy broth (TSB) was found to best maintain both the growth and the fibrinolytic activity of these strains. Culture supernatants were analyzed by SDS-PAGE and fibrin zymography, and the results indicate that a 40 and 27 kDa band seem to be responsible for the fibrinolytic activities of these two isolates and the 27 kDa band was subsequently identified as the mature form of AprE, the major fibrinolytic enzyme. Thus the aprE genes were cloned and the translated amino acid sequences demonstrated 99.3% identity with each other, and 86.5% identity with BsfA, a fibrinolytic enzyme from B. subtilis ZA400 also isolated from Kimchi, and AprE2, a fibrinolytic enzyme from B. subtilis CH3-5 isolated from Cheonggukjang, a traditional Korean fermented soy. Given this B. subtilis K3 and B. velezensis K208 may be promising starter cultures in the production of fermented foods.

Identification of the Predominant Species of Bacillus, Staphylococcus, and Lactic Acid Bacteria in Nuruk, a Korean Starter Culture (배양법을 이용한 누룩 발효 관련 Bacillus 속, Staphylococcus 속 세균 및 유산균의 우점종 확인)

  • Saeyoung Seo;Do-Won Jeong;Jong-Hoon Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.93-98
    • /
    • 2023
  • Nuruk is a starter culture of Korea manufactured by spontaneous fermentation of grains. We isolated bacteria of the genera Bacillus and Staphylococcus, and lactic acid bacteria (LAB) from eight commercial nuruk samples collected from four districts of Korea using selective agar media and identified them based current taxonomic standards. Bacillus was detected in all samples, but Staphylococcus or LAB were not detected in three samples. In seven samples, except one sample scored the highest cell number of LAB, Bacillus and Staphylococcus were counted as the highest and the lowest numbers, respectively. Six species of Bacillus were identified, and B. subtilis, B. velezensis, and B. licheniformis were predominant species. Nine species of coagulase-negative Staphylococcus were identified, and the predominance of S. pseudoxylosus and S. saprophyticus was confirmed. Ten species of LAB including Enterococcus, Lactobacillus and close relatives, Pediococcus, and Weissella were identified. P. pentosaceus was identified as the predominant species.

Genetic Background Behind the Amino Acid Profiles of Fermented Soybeans Produced by Four Bacillus spp.

  • Jang, Mihyun;Jeong, Do-Won;Heo, Ganghun;Kong, Haram;Kim, Cheong-Tae;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.447-455
    • /
    • 2021
  • Strains of four Bacillus spp. were respectively inoculated into sterilized soybeans and the free amino acid profiles of the resulting cultures were analyzed to discern their metabolic traits. After 30 days of culture, B. licheniformis showed the highest production of serine, threonine, and glutamic acid; B. subtilis exhibited the highest production of alanine, asparagine, glycine, leucine, proline, tryptophan, and lysine. B. velezensis increased the γ-aminobutyric acid (GABA) concentration to >200% of that in the control samples. B. sonorensis produced a somewhat similar amino acid profile with B. licheniformis. Comparative genomic analysis of the four Bacillus strains and the genetic profiles of the produced free amino acids revealed that genes involved in glutamate and arginine metabolism were not common to the four strains. The genes gadA/B (encoding a glutamate decarboxylase), rocE (amino acid permease), and puuD (γ-glutamyl-γ-aminobutyrate hydrolase) determined GABA production, and their presence was species-specific. Taken together, B. licheniformis and B. velezensis were respectively shown to have high potential to increase concentrations of glutamic acid and GABA, while B. subtilis has the ability to increase essential amino acid concentrations in fermented soybean foods.

Effect of dietary metallo-protease and Bacillus velezensis CE 100 supplementations on growth performance, footpad dermatitis and manure odor in broiler chickens

  • Park, Cheol Ju;Sun, Sang Soo
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1628-1634
    • /
    • 2022
  • Objective: This study focused on the effect of dietary metallo-protease and Bacillus velezensis CE 100 on growth performance, carcass parameters, intestinal microflora, footpad dermatitis (FPD), and manure odor in broiler chickens. Methods: One hundred-ten (two-day-old Ross 308) broiler chicks were randomly assigned to five groups with two replicate pens. The dietary treatments were divided to control, metallo-protease groups (A1, added with 0.1%; A2, added with 0.2%) and B. velezensis CE 100 groups (B1, added with 0.5%; B2, added with 1.0%). Results: The feed intake was decreased in A1 and B2 compared to the other group (p<0.05). The liver weight was lower in B2 than in A2 (p<0.05). The Salmonella in the cecum was decreased in A2 compared to control and A1 (p<0.05). However, the lactic acid bacteria were increased in all treatments (p<0.05). The litter moisture content was decreased in A2, B1, and B2 (p<0.05). The litter quality visual score was increased in all treatments (p<0.05). The FPD score and prevalence were reduced in all treatments (p<0.05). The (CH3)2S emission was decreased in all treatments (p<0.05). Conclusion: The present study indicated that both additives improve litter quality and reduce the incidence of FPD. These findings suggest that dietary metallo-protease and B. velezensis CE 100 have the potential to improve the broiler chickens' welfare.

The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects

  • Khan, Mohammad Sayyar;Gao, Junlian;Chen, Xuqing;Zhang, Mingfang;Yang, Fengping;Du, Yunpeng;Moe, The Su;Munir, Iqbal;Xue, Jing;Zhang, Xiuhai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.668-680
    • /
    • 2020
  • Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Z-eicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2-arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle-9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.

Detailed Mode of Action of Arabinan-Debranching α-ʟ-Arabinofuranosidase GH51 from Bacillus velezensis

  • Oh, Gyo Won;Kang, Yewon;Choi, Chang-Yun;Kang, So-Yeong;Kang, Jung-Hyun;Lee, Min-Jae;Han, Nam Soo;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • The gene encoding an ${\alpha}-{\text\tiny{L}}-arabinofuranosidase$ (BvAF) GH51 from Bacillus velezensis FZB42 was cloned and expressed in Escherichia coli. The corresponding open reading frame consists of 1,491 nucleotides which encode 496 amino acids with the molecular mass of 56.9 kDa. BvAF showed the highest activity against sugar beet (branched) arabinan in 50 mM sodium acetate buffer (pH 6.0) at $45^{\circ}C$. However, it could hardly hydrolyze debranched arabinan and arabinoxylans. The time-course hydrolyses of branched arabinan and arabinooligosaccharides (AOS) revealed that BvAF is a unique exo-hydrolase producing exclusively ${\text\tiny{L}}-arabinose$. BvAF could cleave ${\alpha}-(1,2)-$ and/or ${\alpha}-(1,3)-{\text\tiny{L}}-arabinofuranosidic$ linkages of the branched substrates to produce the debranched forms of arabinan and AOS. Although the excessive amount of BvAF could liberate ${\text\tiny{L}}-arabinose$ from linear AOS, it was extremely lower than that on branched AOS. In conclusion, BvAF is the arabinan-specific exo-acting ${\alpha}-{\text\tiny{L}}-arabinofuranosidase$ possessing high debranching activity towards ${\alpha}-(1,2)-$ and/or ${\alpha}-(1,3)-linked$ branches of arabinan, which can facilitate the successive degradation of arabinan by $endo-{\alpha}-(1,5)-{\text\tiny{L}}-arabinanase$.