• Title/Summary/Keyword: Bacillus thuringiensis subsp. kurstaki HD-1

Search Result 21, Processing Time 0.02 seconds

Bioactive Characterization of Bacillus thuriniensis subsp. kurstaki CAB133 Isolated from Domestic Soil (국내 토양으로 분리된 Bacillus thuriniensis subsp. kurstaki CAB133균주의 생물학적 특성)

  • Choi, Su-Yeon;Cho, Min-Su;Kim, Tae-Hwan;Kim, Jin-Su;Pack, Seung-Kyung;Youn, Young-Nam;Hong, Soon-Sung;Yu, Yong-Man
    • Korean journal of applied entomology
    • /
    • v.47 no.2
    • /
    • pp.175-184
    • /
    • 2008
  • To screen highly active Bacillus thuringiensis isolates against Spodoptera litura (Lepidoptera, Noctuidae), 46 B. thuringiensis was isolated from 115 samples obtained from several crop soils. Especially, B. thuringiensis subsp. kurstaki CAB133 and CAB162 isolates showed 100% mortality against S. litura. $LD_{50}$ values of CAB 133, CAB162 and HD-1 strains of B. thuringiensis subsp. kurstaki were 0.089, 3.144 and $0.513{\mu}g/ml$ against 2nd larva of S. litura, respectively. The weight of 3rd larva of S. litura which were fed crystal inclusion protein $(1.267{\mu}g/ml)$ with B. thuringiensis subsp. kurstaki CAB133 was about 30 times lass than control group. CAB133 and CAB 162 strains of B. thuringiensis subsp. kurstaki which were taken a highly toxity against S. litura were analyzed by SDS-PAGE, and estimated the molecular weight of the Cry proteins. Their serological identification by H serotypes were showed B. thuringiensis subsp. kurstaki (3abc) type.

Integration and Expression of BaciZlus thun'ngiensis Crystal Protein Gene in Chromosomal DNA of Pseudomonas Strains Using Transposon Tn5 (Transposon Tn5에 의한 Bacillus thuringiensis 독소단백질 유전자의 Pseudomonas 내로의 도입 및 발현)

  • 신병식;구본탁;박승환;김정일
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 1991
  • The crystal protein gene (cp) of Bacillus tizuringienszs subsp. liuvstaki (B.t.k.) HI173 was subcloned into HanzHI site of central region (Tn5-cp) or BglII site of IS50L region (IS50L-cp) in Tn5, and transposed into the chromosomal DNA of five strains of root-colonizing Pseudomonas. The expression of cp gene in Acwiomoncrs transconjugants was demonstrated by immunoblot analysis and bioassay against larvae of the Hyphantria cunea.

  • PDF

Characterization of Bacillus thuringiensis StrainBT-14 having Insecticidal Activity against Plutella xylostella

  • Bok, Song-Hae-Jung, Yong-Chul;Kim, Sung-Uk;Son, Kwang-Hee;Lee, Hyung-Hoan
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.322-326
    • /
    • 1994
  • Bacillus thuringiensis strain BT-14 was isolated from alfalfa dust in Korea. The strain BT-14 produced one bipyramidal crystal and one spore in the cell. The biochemical characteristics of the strain BT-14 were similar to those of Bacillus thuringiensis subsp. kurstaki HD-l. Examination of its antibiotic resistance revealed that while the strain BT-14 was less resistant than BTK HD-l to ampicillin, gentamycin, neomycin and tobramycin, it was more resistant to amikacin than BTK HD-l. The $\delta$-endotoxin crystal of strain BT-14 consisted of a single protein with a high molecular weight of ca 135 KD on a 10% SDS-PACE. The strain BT-14 contained at least nine different plasmids with sizes of 2.9, 5.3, 5.8, 6.2, 9.4, 15.1, 18.1, 23.1 and 79 Kb. In insect bioassay, the isolated strain BT-14 showed lethality of 67% against Plutella xylostella larvae at dilution of 5$\times$$l0^{-4}$ (5$\times$l0 to 3$\times$$l0^2$ spores/ml), which is, almost equivalent to that of BTK HD-l.

  • PDF

Bacillus thuringiensis 내에서 안정한 벡타를 이용한 cry1C 유전자의 발현

  • Choi, Soo-Keun;Oh, Keun-Hee;Kim, Jeong-Il;Park, Seung-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.566-570
    • /
    • 1997
  • During sporulation, Bacillus thuringiensis strains produce crystals consist of toxin proteins highly specific against insect pests. Their host specificities are desirable from a standpoint of environmental safety, but also limit market potential. Thus, development of improved Bacillus thuringiensis strains having broad host spectrum will contribute to increase its use. For the construction of Bacillus thuringiensis strain having broad host spectrum, we cloned cry1C gene encoding a toxin protein highly toxic against Spodoptera exigua from a B. thuringiensis isolate and constructed two recombinant plasmids, pUBClC and plC60. The plasmid PUBC1C has a replication origin of the natural plasmid pBC16 from B. cereus which is closely related species to B. thuringiensis, and the pBC16 was known to be replicated by rolling-circle mechanism. The plasmid pIC60 has a replication origin of a resident 60 MDa plasmid from B. thuringiensis subsp. kurstaki HD263, and it is believed that the pIC60 is replicated in a theta mode. The two plasmids were introduced into B. thuringiensis subsp. kurstaki cryB strain, and the transformed strains produced well-shaped bipyramidal crystals. We confirmed the expression of the cry1C gene by SDS-PAGE, and Western blotting. By investigating the segregational stability, it was found that the plasmid pIC60 is more stable than the pUBC1C.

  • PDF

Construction of a Baculovirus Hyphantria cunea NPV Insecticide Containing the Insecticidal Protein Gene of Bacillus thuringiensis subsp. kurstaki HD1

  • Lee, Hyung-Hoan;Moon, Eui-Sik;Lee, Sung-Tae;Hwang, Sung-Hei;Cha, Soung-Chul;Yoo, Kwan-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.685-691
    • /
    • 1998
  • Baculovirus Hyphantrin. cunea nuclear polyhedrosis virus (HcNPV) insecticide containing the insecticidal protein (ICP) gene from Bacillus thuringiensis subsp. kurstaki HD1 was constructed using a lacZ-HcNPV system. The ICP ($\delta$-endotoxin) gene was placed under the control of the polyhedrin gene promoter of the HcNPV. A polyhedrin-negative virus was derived and named ICP-HcNPV insecticide. Then, the insertion of the ICP gene in the ICP-HcNPV genome was confirmed by Southern hybridization analysis. Polyacrylamide gel electrophoresis (PAGE) analysis of the Spodoptera frugiperda cell extracts infected with the ICP-HcNPV showed that the ICP was expressed in the insect cells as 130 kDa at 5 days post-infection. The ICP produced in the cells was present in aggregates. When extracts from the cells infected with the ICP-HcNPV were fed to 20 Bombyx mori larvae, the following mortality rate was seen; 8 larvae at 1 h, 10 larvae at 3 h, and 20 larvae at 12 h. These data indicate that the B. thuringiensis ICP gene was expressed by the baculovirus insecticide in insect cells and there was a high insecticidal activity. The biological activities of the recombinant virus ICP-HcNPV were assessed in conventional bioassay tests by feeding virus particles and ICP to the insect larvae. The initial baculovirus insecticide ICP-HcNPV was developed in our laboratory and the significance of the genetically engineered virus insecticides is discussed.

  • PDF

Expression of the crylAcl Gene Under the Control of the Native or the $\alpha$-Amylase Promoters in an Acrystalliferous Bacillus thuringiensis Strain

  • Roh, Jong-Yul;Lee, In-Hee;Li, Jian-Hong;Li, Ming-Shun;Kim, Ho-San;Je, Yeon-Ho;Boo, Kyung-Saeng
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.1 no.2
    • /
    • pp.123-129
    • /
    • 2000
  • Expression of the crylAcl gene of an acrystalliferous Bacillus thuringiensis strain under the control of the native or $\alpha$-amylase gene promoter was investigated. The crylAcl gene was cloned in a B. thuringiensis - E. coli shutle vector, pHT3101, undder the control of either the native promoter (pProAc) or the $\alpha$-amylase promoter from Bacillus subtilis (pAmyAc). These two recombinant plasmids were successfully expressed in B. thuringiensis subsp. kurstaki Cry B. The first transformant (ProAc/CB), harboring pProAc, expressed an about 130 kDa protein begining 24 hr after inoculations just as in the case of the wild type of B. thuringiensis subsp. kurstaki HD-73. The second pAmyAc-transformant (AmyAc/CB) began to express the gene just 6 hr after inoculation, but Western analysis showed that the activity of the $\alpha$-amylase promoter was relatively weaker than that of the native promoter. As expected, their toxicity against Plutella xylostella larvae was dependent on the amount of Cry1Acl protein expressed.

  • PDF

Expression of the Bacillus thuringiensis Crystal Protein Gene in Pseudomonas Isolated from Rhizosphere Soil of Korean Crops (국내 농작물의 근부토양에서 분리한 Pseudomonas 내에서의 Bacillus thuringiensis 독소단백질 유전자의 발현)

  • Tag, Koo-Bon;Shin, Byung-Sik;Park, Seung-Hwan;Park, Ho-Yong;Kim, Jeong-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.295-300
    • /
    • 1989
  • Screening of Pseudomonas strains that can be used as hosts for expression of crystal protein gene of Bacillus thuringiensis subsp. kurstaki HD-73 was carried out. From rhizosphere soil of 7 kinds or crops as fluorescent Pseudomonas strains were isolated. A hybrie plasmid, pKTC1, composed of the broad host range vector pKT230 and the crystal protein gene was constructed and used for transformation of the 35 Pseudomonas strains. As the result, the crystal protein gene could be introduced into 4 isolates. Several methods including bioassay and immunochemical detection indicated that the crystall protein gene was expressed in the Pseudomonus isolates.

  • PDF

A Broad-Host-Range Promoter-Probe Vector, pKU20, and Its Use in Promoter Cloning and Expression of Bacillus thuringiensis Crystal Protein Gene in Pseudomonas putida

  • SHIN, BYUNG SIK;BON TAG KOO;SEUNG HWAN PARK;HO YONG PARK;JEONG IL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.240-245
    • /
    • 1991
  • We have constructed a promoter-probe vector pKU20 using pKT230, a derivative of broad-host-range plsmid RSF1010, as a base. The pKU20 contains structural gene for aminoglycoside phos-photransferase (aph), without promoter, and a multiple cloning site upstream the aph. Using this vector, a 412base pairs (bp) PstI fragment showing strong promoter activity both in Escherichia coli LE392 and Pseudomonas putida KCTC1644 has been cloned from Pseudomonas fluorescens chromosomal DNA on the basis of streptomycin resistance. The nucleotide sequence of the 412 bp fragment has been determined and the putative - 35 and -10 region was observed. Insecticidal protein gene of Bacillus thuringiensis subsp. kurstaki HD-73 inserted on downstream of the promoterlike DNA fragment was efficiently expressed in E. coli and P. putida. The toxin protein was efficiently synthesized in an insoluble form in both strains.

  • PDF

Expression in Eschepichia coli of a Cloned Bacillus thuringiensis subsp. kurstaki HDI In-secticidal Protein Gene. (클로닝된 Bacillus thuringiensis subsp. kurstaki HDI 살충성 단백질 유전자의 대장균에서의 발현)

  • 황성희;차성철;유관희;이형환
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.497-506
    • /
    • 1998
  • The expression in Escherichia coli of a cloned insecticidal protein (ICP) gene from Bacillus thuringiensis var. kurstaki HD1 in pHLN1-80 (+) and pHLN2-80(-) plasmids was investigated through deletions in promoters, transcription start point, and termination region. Six recombinant plasmids were constructed in an attempt to analyze the overexpression of the ICP in relations to its gene structure. The amounts of ICP produced from the recombinants were measured by SDS-PAGE and confirmed by Western blot analysis. One clone was not overexpressed which having only -80 bp (contained BtI promoter) part of the ICP gene promoter (without Plac promoter), the right-oriented ICP gene and the termination region. Removal of 350 bp from upstream region of the Plac of the clone pHLN2-80 (-) resulted in overexpression of the ICP. One clone was not overexpressed in which the clone consisted of -72 bp part of the ICP promoter without the transcription start point and the transcriptional termination region, and having the right-oriented ICP gene sequence. One clone consisting of the inverted ICP gene sequence, the -72 bp ICP gene promoter, and without the termination region caused overexpression. One clone which consisted of the inverted ICP gene, the -72 bp ICP gene promoter and the termination sequence was overexpressed. These results indicated that the Plac promoter, transcription termination region, the inverted ICP gene insertion, and the -80 bp or -72 bp part of the ICP gene promoters were concerned in the overexpression of the ICP gene in the recombinant plasmid, and also the overexpression mechanism might result from the disruption of the transcription-suppressing regions in the promoter regions.

  • PDF

Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control

  • Roh, Jong-Yul;Choi, Jae-Young;Li, Ming-Sung;Jin, Byung-Rae;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.547-559
    • /
    • 2007
  • Bacillus thuringiensis (Bt) was first described by Berliner [10] when he isolated a Bacillus species from the Mediterranean flour moth, Anagasta kuehniella, and named it after the province Thuringia in Germany where the infected moth was found. Although this was the first description under the name B. thuringiensis, it was not the first isolation. In 1901, a Japanese biologist, Ishiwata Shigetane, discovered a previously undescribed bacterium as the causative agent of a disease afflicting silkworms. Bt was originally considered a risk for silkworm rearing but it has become the heart of microbial insect control. The earliest commercial production began in France in 1938, under the name Sporeine [72]. A resurgence of interest in Bt has been attributed to Edward Steinhaus [105], who obtained a culture in 1942 and attracted attention to the potential of Bt through his subsequent studies. In 1956, T. Angus [3] demonstrated that the crystalline protein inclusions formed in the course of sporulation were responsible for the insecticidal action of Bt. By the early 1980's, Gonzalez et al. [48] revealed that the genes coding for crystal proteins were localized on transmissible plasmids, using a plasmid curing technique, and Schnepf and Whiteley [103] first cloned and characterized the genes coding for crystal proteins that had toxicity to larvae of the tobacco hornworm, from plasmid DNA of Bt subsp. kurstaki HD-1. This first cloning was followed quickly by the cloning of many other cry genes and eventually led to the development of Bt transgenic plants. In the 1980s, several scientists successively demonstrated that plants can be genetically engineered, and finally, Bt cotton reached the market in 1996 [104].