• Title/Summary/Keyword: Bacillus subtilis expression vector

Search Result 51, Processing Time 0.032 seconds

Overproduction of Pseudomonas sp. LBC505 Endoglucanase in Escherichia coli and Bacillus subtilis

  • CHUNG, YOUNG-CHUL;KYEONG-SOOK KIM;YANG-WOO KIM;SUNG-SIK CHUN;NACK-KIE SUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.18-21
    • /
    • 1995
  • Endoglucanase gene of Pseudomonas sp. LBC505 was previously cloned in pUCl9 to yield plasmid pLC1. overproduction of endoglucanase was attempted by following ways. First, the endoglucanase gene of Pseudomonas sp. LBC505 cloned in pUCl9(pLC1) was tandemly inserted, step by step, into a expression vector pKK223-3 in a directly repeated form to enhance productivity of endoglucanase. Escherichia coli containing pKCC30 among the resulting plasm ids showed the higher yield of the endoglucanase. Ecoli harboring pKCC30 which had three inserted endoglucanase genes expressed about 12.3 times as much CMCase activity as Ecoli harboring pLCl. Second, the endoglucanase gene was subcloned into Bacillus subtilis expression vector pgnt41 for both overproduction and extracellular secretion of the endoglucanase. A resulting plasmid pgntc15 in Bacillus subtilis expressed 4.3-fold higher levels of CMCase activity than that of E.coli harboring pLCl and the endoglucanase produced was entirely secreted into the culture medium.

  • PDF

Cloning and High Expression of Nattokinase Gene from Bacillus subtilis BB-1 (Bacillus subtilis BB-1으로부터 나토키나아제 유전자 크로닝 및 대량발현)

  • Lee Young-Hoon;Lee Sung-Ho;Park Ki-Hoon;Choi Young-Ju;Jeong Yong-Kee;Gal Sang-Wan
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.274-281
    • /
    • 2006
  • A fibrinolytic enzyme gene was isolated from Bacillus subtilis BB-1 by PCR method. Primers for PCR cloning were designed according to pre-identified gene for fibrinolytic enzymes from B. subtilis. The primer sequences were 5'-CGG ATC CGT GAG AGG CAA AAA GGT G-3' and 5'-TGA ATT CTT AAT GTG CTG CTG CTT GTC C-3' as concensus sequences of the fibrinolytic genes of Bacillus species. The PCR product was 1,145 bp and the sequence homology was 99% with nattokinase gene isolated from Japanese natto. The cloned fibrinolytic gene was reconstructed in Bacillus-E. coli shuttle vector, pEB for bulk-production. The fibrinolytic enzyme was purified by FPLC from the cloned B. subtilis 168. The optimum pH and temperature of the enzyme were 7.0 and $35^{\circ}C$, respectively. The fibrinolytic enzyme did not show any activity toward to skim milk, gelatin, casein and blood agar plate. The enzyme specific polyclonal antibody was prepared in rabbit for further assays such as detection of the gene expression in plant cells. This means that the enzyme may be used for health-care such as thrombosis without any hamful effects in the blood vessel.

Production and Properties of a Bacillus subtilis Mannanase from Recombinant Lactobacillus paracasei (재조합 Lactobacillus paracasei로부터 Bacillus subtilis의 Mannanase 생산과 효소특성)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.186-189
    • /
    • 2012
  • A gene coding for mannanase (manA) from Bacillus subtilis was introduced into a shuttle vector pGK12 between Escherichia coli, B. subtilis and Lactobacillus paracasei. As a result of transferring the resultant plasmid, designated pGK12M3, into three different strains, the manA gene was found to be expressed in L. paracasei as well as in B. subtilis and E. coli. In a 4 L fermentor culture, the production of mannanase by recombinant L. paracasei (pGK12M3) reached a maximum level of 5.4 units/ml in an MRS medium with a fixed pH 6.5. Based on the zymogram of mannanase, it is assumed that mannanase produced by recombinant L. paracasei is not maintained stably with proteolytic degradation. The optimal temperature and thermostability of mannanase produced by recombinant L. paracasei were also found to be different from those of enzymes produced by B. subtilis.

Cloning of Fibrinolytic Enzyme Gene from Bacillus subtilis Isolated from Cheonggukjang and Its Expression in Protease-deficient Bacillus subtilis Strains

  • Jeong, Seon-Ju;Kwon, Gun-Hee;Chun, Ji-Yeon;Kim, Jong-Sang;Park, Cheon-Seok;Kwon, Dae-Young;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1018-1023
    • /
    • 2007
  • Bacillus subtilis CH3-5 was isolated from cheonggukjang prepared according to traditional methods. CH3-5 secreted at least four different fibrinolytic proteases (63, 47, 29, and 20 kDa) into the culture medium. A fibrinolytic enzyme gene, aprE2, encoding a 29kDa enzyme was cloned from the genomic DNA of CH3-5, and the DNA sequence determined. aprE2 was overexpressed in heterologous B. subtilis strains deficient in extracellular proteases using a E. coli-Bacillus shuttle vector. A 29 kDa AprE2 band was observed and AprE2 seemed to exhibit higher activities towards fibrin rather than casein.

Cloning and Expression of A Bacillus licheniformis Cellulase Gene (Bacillus licheniformis WL-12의 cellulase 유전자 클로닝과 발현)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.313-318
    • /
    • 2006
  • A thermophilic bacterium producing the extracellular cellulase was isolated from soybean paste, and the isolate WL-12 has been identified as Bacillus licheniformis on the basis on its 16S rRNA sequence, morphology and biochemical properties. A gene encoding the cellulase of B. licheniformis WL-12 was cloned and its nucleotide sequence was determined. This cellulase gene, designated celA, consisted of 1,551 nucleotides, encoding a polypeptide of 517 amino acid residues. The gene product contained catalytic domain and cellulose binding domain. The deduced amino acid sequence was highly homologous to those of cellulases of B. licheniformis, B. subtilis and B. amytoliquefaciens belonging to the glycosyl hydrolase family 5. When the celA gene was highly expressed using a strong B. subtilis promoter, the extracellular cellulase was produced up to 7.0 units/ml in B. subtilis WB700.

Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity

  • Xu, Jian;Zhong, Fei;Zhang, Yonghong;Zhang, Jianlou;Huo, Shanshan;Lin, Hongyu;Wang, Liyue;Cui, Dan;Li, Xiujin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.576-584
    • /
    • 2017
  • Objective: To generate recombinant Bacillus subtilis (B. subtilis) engineered for expression of porcine ${\beta}-defensin-2$ (pBD-2) and cecropin P1 (CP1) fusion antimicrobial peptide and investigate their anti-bacterial activity in vitro and their growth-promoting and disease resisting activity in vivo. Methods: The pBD-2 and CP1 fused gene was synthesized using the main codons of B. subtilis and inserted into plasmid pMK4 vector to construct their expression vector. The fusion peptide-expressing B. subtilis was constructed by transformation with the vector. The expressed fusion peptide was detected with Western blot. The antimicrobial activity of the expressed fusion peptide and the recovered pBD-2 and CP1 by enterokinase digestion in vitro was analyzed by the bacterial growth-inhibitory activity assay. To analyze the engineered B. subtilis on growth promotion and disease resistance, the weaned piglets were fed with basic diet supplemented with the recombinant B. subtilis. Then the piglets were challenged by enteropathogenic Escherichia coli (E. coli). The weight gain and diarrhea incidence of piglets were measured after challenge. Results: The recombinant B. subtilis engineered for expression of pBD-2/CP1 fusion peptide was successfully constructed using the main codons of the B. subtilis. Both expressed pBD-2/CP1 fusion peptide and their individual peptides recovered from parental fusion peptide by enterokinase digestion possessed the antimicrobial activities to a variety of the bacteria, including gram-negative bacteria (E. coli, Salmonella typhimurium, and Haemophilus parasuis) and grampositive bacteria (Staphylococcus aureus). Supplementing the engineered B. subtilis to the pig feed could significantly promote the piglet growth and reduced diarrhea incidence of the piglets. Conclusion: The generated B. subtilis strain can efficiently express pBD-2/CP1 fusion antimicrobial peptide, the recovered pBD-2 and CP1 peptides possess potent antimicrobial activities to a variety of bacterial species in vitro. Supplementation of the engineered B. subtilis in pig feed obviously promote piglet growth and resistance to the colibacillosis.

Heterologous Gene Expression of aprE2 Encoding a 29 kDa Fibrinolytic Enzyme from Bacillus subtilis in Bacillus licheniformis ATCC 10716

  • Kwon, Gun-Hee;Jeong, Woo-Ju;Lee, Ae-Ran;Park, Jae-Yong;Cha, Jae-Ho;Song, Young-Sun;Kim, Jeong-Hwan
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1372-1375
    • /
    • 2008
  • The aprE2 gene from Bacillus subtilis CH3-5 was expressed in Bacillus licheniformis ATCC 10716 using a Bacillus-Escherichai coli shuttle vector, pHY300PLK. The fibrinolytic activity of transformant (TF) increased significantly compared to B. licheniformis 10716 control cell. During the 100 hr incubation in Luria-Bertaini broth at $37^{\circ}C$, fibrinolytic activity of B. licheniformis TF increased rapidly at the late growth stage, after 52 hr of incubation, which was confirmed by zymography using a fibrin gel. pHY3-5 was stably maintained in B. licheniformis without tetracycline (Tc) in the media, 60.9% of cells still maintained pHY3-5 after 100 hr of cultivation.

Expression of $HpaG_{Xooc}$ Protein in Bacillus subtilis and its Biological Functions

  • Wu, Huijun;Wang, Shuai;Qiao, Junqing;Liu, Jun;Zhan, Jiang;Gao, Xuewen
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.194-203
    • /
    • 2009
  • $HpaG_{Xooc}$, from rice pathogenic bacterium Xanthomonas oryzae pv. oryzicola, is a member of the harpin group of proteins, eliciting hypersensitive cell death in non-host plants, inducing disease and insect resistance in plants, and enhancing plant growth. To express and secret the $HpaG_{Xooc}$ protein in Bacillus subtilis, we constructed a recombinant expression vector pM43HF with stronger promoter P43 and signal peptide element nprB. The SDS-PAGE and Western blot analysis demonstrated the expression of the protein $HpaG_{Xooc}$ in B. subtilis. The ELISA analysis determined the optimum condition for $HpaG_{Xooc}$ expression in B. subtilis WBHF. The biological function analysis indicated that the protein $HpaG_{Xooc}$ from B. subtilis WBHF elicits hypersensitive response(HR) and enhances the growth of tobacco. The results of RT-PCR analysis revealed that $HpaG_{Xooc}$ induces expression of the pathogenesis-related genes PR-1a and PR-1b in plant defense response.

Use of .lambda.gt 11 and antibody probes to isolate genes encoding RNA polymerase subunits from bacillus subtilis

  • Suh, Joo-Won;Price, Chester
    • The Microorganisms and Industry
    • /
    • v.14 no.1
    • /
    • pp.17-20
    • /
    • 1988
  • A genetic analysis of the complex Bacillus subtilis transcriptional apparatus is essential to understand the function, regulation, and interaction of the transcriptase components during growth and sporulation. This approach in Escherichia coli has uncovered fundamental mechanisms regulating gene expression Cole and Nomura, 1986; Lindahl and Zengel, 1986) and an analysis of the B. subtilis transcriptase will allow comoparison of the E.coli system to another bacterium that has evolved under different selective pressures. To this end we used antibody probes to isolate the alpha, beta, and beta' core subunit genes from a .lambda.gtill expression vector library. To address the question of function ans regulation of the minor sigma factors that confer promoter specifity on the polymerase core (Losick et al., 1986), we used the same approach to isolate the gene for the 37,000 dalton sigma factor, sigma-37.

  • PDF

Bacillus subtilis의 단백질 분비기구 SecY의 유전자 수준의 조절이 단백질 분비에 미치는 영향

  • 김상숙;김순옥;서주원
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.408-414
    • /
    • 1996
  • The SecY is a central component of the protein export machinery that mediate the translocation of secretory proteins across the plasma membrane, and has been known to be rate-limiting factor of secretion in Escherichia coli. In order to study the extracellular protein secretion in Gram-positive microorganism, we have, constructed strains harboring more than one copy of the gene for SecY. Firstly, the gene, for B. subtilis SecY and its promoter region was subcloned into pDH32 and the chimeric vector was inserted into amyE locus by homologous recombination. Secondly, low copy number vector, pCED6, was also used for subcloning the secY gene and for constructing a strain which harbors several copies of secY. The KH1 cell which harbor two copies of secY on the chromosome excreted more extracellular proteins than the wild type PB2. Moreover, the KH2 cells which harbor several copies of secY in pCED6 vector excreted more extracellular proteins than the KH1 cells. Here, we found that the capacity of protein secretion is partly controlled by the number of secY and it is suggested that SecY has also an important role in protein secretion in B. subtilis, a gram positive microorganism, as like in E. coli. This will promote the use of B. subtilis as a host for the expression of useful foreign gene and excretion of precious proteins.

  • PDF