• Title/Summary/Keyword: Bacillus sp. cellulase

Search Result 53, Processing Time 0.028 seconds

Isolation of Aerobic Bacteria and Its Efficacy for the Treatment of Korean Food-Wastes (한식 잔반처리를 위한 호기성 미생물의 분리 및 그 분해효과)

  • 김광현;김지연;이광배
    • Journal of Life Science
    • /
    • v.9 no.5
    • /
    • pp.510-517
    • /
    • 1999
  • For the treatment of Korean food-wastes, three mesophilic and one thermophilic bacteria were isolated from soil and fermented fertilizers. The thermophilic Streptomyces sp. strain WF021 produced two enzymes which were a protease and a lipase at 55$^{\circ}C$. The mesophilic Bacillus sp. strain WF024 produced four enzymes which were a protease, a lipase, a amylase and a cellulase when the strain was grown both at 3$0^{\circ}C$ and 55$^{\circ}C$. The Bacillus sp. PY123 had produced three enzymes which were a protease, a cellulase and a lipase at 3$0^{\circ}C$. The Bacillus sp. strain CM1 produced three enzymes which were a protease, a amylase, and a cellulase at 3$0^{\circ}C$. The bacteria were grown in media containing 6% NaCl at least and did not have antagonism each other. The four isolates treated much more food-wastes than referance strains did. In a flask without aeration, three reference strains treated 15.4% of food-wastes, while four isolates treated 23.7% of food-wastes. In a flask with aeration, food-wastes were treated 67.3% by four isolates, and 64.3% by three reference strains, but 53.9% without bacteria. However, food-wastes were treated about 78% in a 200$\ell$-reactor made by Siwon Co., while 65.8% in a 20$\ell$-reactor made by Sanyo Co.

  • PDF

Isolation of Bacillus sp. Producing Xylanase and Cellulase and Optimization of Medium Conditions for Its Production. (Xylanase, Cellulase의 생산성이 높은 Bacillus sp.의 분리 및 효소생산을 위한 배지조건의 최적화)

  • 정원형;양시용;송민동;하종규;김창원
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.383-388
    • /
    • 2003
  • A bacterium producing the extracellular xylanase and CMCase was isolated from soil and has been identified as Bacillus sp. The isolate, named Bacillus sp. A-7, was shown to be very similar to Bacillus licheniformis on the basis of its biochemical and physiological properties. The maximum xylanase and CMCase production were obtained when 2.0% (w/v) glucose and 0.3% (w/v) yeast extract were used as carbon source and nitrogen source, respectively. The best mineral conditions for xylanase and CMCase production were 0.1%(w/v) $CaC1_2$. Among the various feedstuffs, 1.0%(w/v) soybean meal was selected for the best xylanase and CMCase production.

Purification and Characterization of Carboxymethyl-cellulase Produced by Bacillus sp. KD1014

  • Lee, Kyung-Dong;Kim, Jungho;Kim, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.107-112
    • /
    • 1999
  • A carboxymethyl-cellulase (CMCase) was purified from the culture supernatant of Bacillus sp. KD1014 by ultrafiltration, ammonium sulfate precipitation, and a series of chromatography on QAE-Sephadex A-50, hydroxylapatite and Sephadex G-75. The purified CMCase was a single protein of 32 kDa, showed an optimum activity at $60^{\circ}C$ and pH 6.0, and had a half-life of 23 min at $70^{\circ}C$. The enzyme activity was not influenced by metal ions such as $Mg^{2+},\;Fe^{3+},\;K^+,\;Zn^{2+}$, and $Cu^{2+}$ at a concentration of 1.0 mM, partially inhibited by $Mn^{2+}$ and $Ag^+$, and significantly inhibited by pentachlorophenol (PCP). The purified enzyme showed a 3.9-times higher activity on lichenan than on CMC, but hardly cleaved xylan, starch, avicel, laminarin, filter paper and levan. The results of activity staining of the purified enzyme separated by native and denaturing gel electrophoresis suggested that the CMCase might exist in dimeric, oligomeric or aggregated form as well as in monomeric form. The enzymatic cleavage products from cellotetraose indicated that the CMCase possessed transglycosylation activity.

  • PDF

Screening of Microorganisms Secreted High Efficient Enzymes and Properties of Enzymatic Deinking for Old Newsprint(V) - Characteristics of Cellulase and Xylanase from Bacillus sp. - (고효율 효소를 분비하는 균주의 선발 및 신문고지의 효소탈묵 특성(제5보) - Bacillus sp.에서 단리한 Cellulase와 Xylanase의 특성 -)

  • Park, Seong-Cheol;Lee, Yang-Soo;Jeong, In-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.9-16
    • /
    • 2005
  • This study was carried out to investigate the characteristics of extracellular cellulase and xylanase from 4 selected different species, such as enzyme activity and stability by pH, temperature and metal ions, for application into enzymatic deinking system. The optimal temperature and pH for enzyme activity of Bacillus pumilus I, B. subtilis I, B. pumilus II and B. subtilis II were mainly $40{\sim}60^{\circ}C$ and pH $6.0{\sim}7.0$, respectively. Certain metal ions, calcium and cobalt, elevated enzyme activity, even though there were different results of enzyme activities based on various metal ions in 4 different species. With these results we suggest that enzymatic deinking system should be proceed at $50^{\circ}C$ with neutral pH condition.

Cloning and Characterization of a Bifunctional Cellulase-Chitosanase Gene from Bacillus lichenformis NBL420

  • HONG, IN-PYO;HONG-KI JANG;SHIN-YOUNG LEE;SHIN-GEON CHOI
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • A 1,3 kb cellulase gene encoding novel bifunctional cellulase-chitosanase activity was cloned from biopolymer-producing alkali-tolerant B. lichenformis NBL420 in E. coli. A recombinant cellulase-chitosanase, named CelA, was expressed and purified to homogeneity. The activity staining and the enzymatic characterization of the purified CeIA revealed bifunctional activities on carboxymethyl cellulose (CMC) and glycol-chitosan. The similar characteristics of the enzymatic activities at the optimum pH, optimum temperature, and thermostability Indicated that CelA used a common catalytic domain with relaxed substrate specificity. A comparison of the deduced amino acids in the N-terminal region revealed that the mature CelA had a high homology with the previously identified bifunctional cellulase-chitosanase of Myxobacter sp. AL- 1.

Purification, Characterization, and Gene Cloning of Chitosanase from Bacillus cereus H-l (Bacillus cereus H-1으로부터 Chitosanas리 분리와 특성연구 및 유전자 클로닝)

  • Jang, Hong-Ki;Yi, Jae-Hyoung;Kim, Jung-Tae;Lee, Keun-Eok;Park, Shin-Geon
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.216-223
    • /
    • 2003
  • A 1.3-kb of chitosanase gene (choA) encoding 45-kDa polypeptide was cloned, expressed, and characterized from a newly isolated Bacillus cereus H-1. The chitosanase protein (ChoA) of B. cereus H-l was purified to homogeneity by ammonium sulfate precipitation and CM-sephadex column chromatography. Optimum pH was around 7, and stable pH range in the incubation at 50 C was 4-11. Optimum temperature was around 50 C, and enzyme activity was relatively stable below 45 C. ChoA showed the activities toward carboxymethyl cellulose (CMC) in addition to soluble or glycol chitosan. Based on MALDI-TOF MS analysis of purified ChoA, the entire amino acid sequence of ChoA was interpreted by database searching of previously known Bacillus chitosanases. A 1.6 kb of PCR product of corresponding chitosanase gene was obtained and its DNA sequence was determined. The deduced amino acid of choA revealed that ChoA have a 98% homology with those of Bacillus sp. No.7-M strain and Bacillus sp. KCTC0377BP. The recombinant ChoA protein was expressed in E. coli DH5$\alpha$. Deduced amino acid comparison of choA with other chitosanases suggested that it belongs to family 8 microbial endo-chitosanase with chitosanase-cellulase activity.

Isolation and characterization of cellulolytic bacteria, Bacillus sp. EFL1, EFL2, and EFP3 from the mixed forest (혼효림으로부터 셀룰로오스분해 박테리아 분리 및 효소학적 특성규명)

  • Park, Hwa Rang;Oh, Ki-Cheol;Kim, Bong-Gyu
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • This study was conducted to isolate the cellulolytic bacteria able to grow on LB- Carboxymethyl cellulose (CMC) agar trypan blue medium from the mixed forest and Larix leptolepis stands. Three bacterial strains with high activity against both CMC and xylan were isolated. Both API kit test and 16S rRNA gene sequence analysis revealed that the three different isolates belong to the gene Bacillus. Therefore, the isolates named as Bacillus sp. EFL1, Bacillus sp. EFL2, and Bacillus sp. EFP3. The optimum growth temperature of Bacillus sp. EFL1, EFL2, and EFP3 were $37^{\circ}C$. The optimum temperature for CMCase and xylanase from Bacillus sp. EFL1 were $50^{\circ}C$. The optimum pH of Bacillus sp. EFL1 xylanase was pH 5.0 but the optimum pH of CMCase from Bacillus sp. EFL1 was pH 6.0. The optimum temperature of CMCase and xylanase from Bacillus sp. EFL2 was $60^{\circ}C$, respectively. The optimum pH of CMCase of Bacillus sp. EFL2 was 5.0, whereas xylanase showed high activity at pH 3.0-9.0. The optimum temperature for CMCase and xylanase of Bacillus sp. EFP3 was $50^{\circ}C$. The optimum pH for CMCase and xylanse was 5.0 and 4.0, respectively. CMCases from Bacillus sp. EFL1, EFL2, and EFP3 were thermally unstable. Although xylanase from Bacillus sp. EFL1 and EFP3 showed to be thermally unstable, xylanase from Bacillus sp. EFL2 showed to be thermally stable. Therefore, Bacillus sp. EFL2 has great potential for animal feed, biofuels, and food industry applications.

Characterization of a Xylanase Produced by Bacillus sp. N-25 (Bacillus sp. N-25가 생산하는 Xylanase의 특성)

  • 김원곤;이찬용;이계호
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.559-564
    • /
    • 1992
  • To increase the efficency of utilizing cellulosic biomass, a potent xylanase producing bacteria was isolated and identified as Bacillus sp. N-25. Extracellular xylanase from Bacillus sp. N-25 was partially purified by ammonium sulfate precipitation, DEAE-Sephadex A-25 and Sephadex G-IOO column chromatographies. The xylanase was single fraction on chromatography and was true xylanase without cellulase activity. The enzyme was stable at pH 6-8 and 80% activity was remained at $50^{\circ}C$ for 30 min, but was inhibited by $Hg^{2+}$, $Ag^{2+}$, and $Mn^{2+}$. From the fact that the major end product was xylose, we suggested that the enzyme is an exo-xylanase which may be a prime candidate for industrial use.

  • PDF

Characterization of Cellulase and Xylanase from Bacillus subtilis NC1 Isolated from Environmental Soil and Determination of Its Genes (Bacillus subtilis NC1 유래 cellulase와 xylanase의 특성 규명 및 효소 유전자의 규명)

  • Park, Chang-Su;Kang, Dae-Ook;Choi, Nack-Shick
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.912-919
    • /
    • 2012
  • A Bacillus sp. strain producing celluase and xylanase was isolated from environmental soil with LB agar plate containing carboxymethylcellulose (CM-cellulose) and beechwood xylan stained with trypan blue as substrates, respectively. Based on the 16S rRNA gene sequence and API 50 CHL test, the strain was identified as B. subtilis and named B. subtilis NC1. The cellulase and xylanase from B. subtilis NC1 exhibited the highest activities for CM-cellulose and beechwood xylan as substrate, respectively, and both enzymes showed the maximum activity at pH 5.0 and $50^{\circ}C$. We cloned and sequenced the genes for cellulase and xylanase from genomic DNA of the B. subtilis NC1 by the shot-gun cloning method. The cloned cellulase and xylanase genes consisted of a 1,500 bp open reading frame (ORF) encoding a 499 amino acid protein with a calculated molecular mass of 55,251 Da and a 1,269 bp ORF encoding a 422 amino acid protein with a calculated molecular mass of 47,423 Da, respectively. The deduced amino acid sequences from the genes of cellulase and xylanase showed high identity with glycosyl hydrolases family (GH) 5 and 30, respectively.

Isolation and characterization of Bacillus subtilis NO12 from button mushroom substrates (양송이 배지로부터 분리된 Bacillus subtilis NO12의 특성)

  • Kim, Hye Soo;Park, Hyun Young;Lee, Chan-Jung;Kong, Won-Sik;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.249-253
    • /
    • 2017
  • Twelve strains of bacteria with cellulase and xylanase activities were isolated from spent mushroom substrates collected from button mushroom cultivation farm, Buye, Chungcheongnam-do in Korea. Among them, one strain, designated NO12, with higher cellulase and xylanase activities was selected by agar diffusion method. The strain NO12 was identified to be a Bacillus sp. by biochemical characteristics using Bacillus ID kit and MicroLog system. Comparative 16S rDNA gene sequence analysis showed that strain NO12 formed a distinct phylogenetic tree within the genus Bacillus and was most closely related to Bacillus subtilis with 16S rDNA gene sequence similarity of 99.2%. Based on its physiological properties, biochemical characteristics, and phylogenetic distinctiveness, strain NO12 was classified within the genus Bacillus, for which the name Bacillus subtilis NO12 was proposed. The cellulase and xylanase activities of B. subtilis NO12 were slightly increased according to bacterial population from exponential phase to stationary phase in the growth curve for B. subtilis NO12. The xylanase activity continuously increased from the beginning of the exponential phase and exhibited maximum activity in the middle of the exponential phase.