• Title/Summary/Keyword: Bacillus pumilus

Search Result 100, Processing Time 0.025 seconds

Screening and Identification of the Fibrinolytic Bacterial Strain from Jeot-Gal, Salt-fermented Fish (젓갈류로부터 혈전용해 균주의 분리 및 동정)

  • Jang, Young-Ryeol;Kim, Won-Keuk;Kwon, Ik-Boo;Lee, Hyun-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.655-659
    • /
    • 1998
  • Bacterial strain showing the strong fibrinolytic activity (2.04 plasmin unit) was screened from Jeot-Gal, Korean salt-fermented fish collected from various region. For the identification, when the strain was characterized morphologically, culturally, and biochemically, it was identified to Bacillus pumilus. And, when the fatty acids composition of the strain was analyzed, it was identified to Bacillus atropheus. Finally, the 16S rRNA partial sequence (V3 region) showed that the fibrinolytic stain screened from Jeot-Gal was identified as Bacillus subtilis. So, we named it Bacillus subtilis KJ-48.

  • PDF

Antibacterial activity of lactic acid bacteria against biogenic amine-producing Bacillus spp. isolated from traditional fermented soybean paste (전통 발효 된장으로부터 분리된 바이오제닉 아민 생성 바실러스균에 대한 유산균의 항균 활성)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.398-409
    • /
    • 2018
  • In the present study, biogenic amine-forming Bacillus spp. and bacteriocin-producing lactic acid bacteria (LAB) isolated from Doenjang were generally identified through 16S rRNA gene sequencing, and the physicochemical and microbiological characteristics of cheonggukjang prepared using the isolated strains were investigated. Biogenic amine-producing bacteria from the samples were identified as Bacillus licheniformis DB102, B. subtilis DB203, B. stearothermophilus DB206, B. pumilus DB209, B. subtilis DB310, B. coagulans DB311, B. cereus DB313, B. amyloliquefaciens DB714, B. amylolique-faciens DB915, B. licheniformis DB917, B. cereus DB1019, B. subtilis DB1020, B. megaterium DB1022. The bacteriocin-producing LAB showed antibacterial effect against biogenic amine-producing Bacillus spp. were identified as Lactobacillus plantarum DLA205, L. brevis DLA501, L. fermentum DLA509, L. acidophilus DLA703, and Enterococcus faecalis DLA804. The bacteriocin produced by the LAB significantly decreased the viable numbers and the amine production ability of the biogenic amine-forming Bacillus spp. in a concentration dependent manner. Therefore, the pH, ammonia nitrogen and biogenic amine content of cheonggukjang prepared by mixed culture of the LAB and Bacillus spp. were significantly decreased compared to the control group.

Bacillus spp. as Biocontrol Agents of Root Rot and Phytophthora Blight on Ginseng

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.63-66
    • /
    • 2004
  • Ginseng (Panax ginseng) is one of the most widely cultivated medicinal herbs in Korea. However, yield losses reached up to 30-60% due to various diseases during 3 or 5 years of ginseng cultivation in the country. Therefore, successful production of ginseng roots depends primarily on the control of diseases. The objective of this study was to select potential biocontrol agents from rhizobacteria isolated from various plant internal root tissues for the control of multiple ginseng diseases as an alternative to fungicides. Among 106 Bacillus strains, two promising biocontrol agents, Bacillus pumilus strain B1141 and Paenibacillus lentimobus strain B1146, were selected by screening against root rot of ginseng caused by Cylindrocarpon destructans in a greenhouse. Pre-inoculation of selected isolates to seed or l-year-old root of ginseng resulted in stimulation of shoot and/or root growth of seedlings, and successfully controlled root rot caused by C. destructans (P<0.05). Furthermore, drenching of cell suspension of the selected isolates on seedling-growing pots reduced the incidence of Phytophthora blight after the seedlings were challenged with zoospores of Phytophthora cactorum (P<0.05). P. lentimorbus strain B1146 showed antifungal activity against various soil-borne pathogens in vitro, while B. pumilus strain B1141 did not show any. Results of this study suggest that some rhizobacteria can induce resistance against various plant diseases on ginseng.

Molecular Cloning and the Nucleotide Sequence of a Bacillus sp. KK-l $\beta$-Xylosidase Gene

  • Chun, Yong-Chin;Jung, Kyung-Hwa;Lee, Jae-Chan;Park, Seung-Hwan;Chung, Ho-Kwon;Yoon, Ki-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.28-33
    • /
    • 1998
  • A gene coding for ${\beta}$-xylosidase from thermophilic xylanolytic Bacillus sp. KK-1 was cloned into Escherichia coli using plasmid pBR322. Recombinant plasmid DNAs were isloated from E. coli clones which were capable of hydrolyzing 4-methylumbelliferyl-${\beta}$-D xylopyranoside. Restriction analysis showed the DNAs to share a common insert DNA. Xylo-oligosaccharides, including xylotriose, xylotetraose, xylopentaose, and xylobiose were hydrolyzed to form xylose as an end product by cell-free extracts of the E. coli clones, confirming that the cloned gene from strain KK-1 is ${\beta}$-xylosidase gene. The ${\beta}$-xylosidase gene of strain KK-1 designated as xylB was completely sequenced. The xylB gene consisted of an open reading frame of 1,602 nucleotides encoding a polypeptide of 533 amino acid residues, and a TGA stop codon. The 3' flanking region contained one stem-loop structure which may be involved in transcriptional termination. The deduced amino acid sequence of the KK-1 ${\beta}$-xylosidase was highly homologous to the ${\beta}$-xylosidases of Bacillus subtilis and Bacillus pumilus, but it showed no similarity to a thermostable ${\beta}$-xylosidase from Bacillus stearothermophilus.

  • PDF

Overexpression and characterization of thermostable chitinase from Bacillus atrophaeus SC081 in Escherichia coli

  • Cho, Eun-Kyung;Choi, In-Soon;Choi, Young-Ju
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.193-198
    • /
    • 2011
  • The chitinase-producing strain SC081 was isolated from Korean traditional soy sauce and identified as Bacillus atrophaeus based on a phylogenetic analysis of the 16S rDNA sequence and a phenotypic analysis. A gene encoding chitinase from B. atrophaeus SC081 was cloned in Escherichia coli and was named SCChi-1 (GQ360078). The SCChi-1 nucleotide sequences were composed of 1788 base pairs and 596 amino acids, which were 92.6, 89.6, 89.3, and 78.9% identical to those of Bacillus subtilis (ABG57262), Bacillus pumilus (ABI15082), Bacillus amyloliquefaciens (ABO15008), and Bacillus licheniformis (ACF40833), respectively. A recombinant SCChi-1 containing a hexahistidine tag at the amino-terminus was constructed, overexpressed, and purified in E. coli to characterize SCChi-1. $H_6SCChi$-1 revealed a hydrolytic band on zymograms containing 0.1% glycol chitin and showed the highest lytic activity on colloidal chitin and acidic chitosan. The optimal temperature and pH for chitinolytic activity were $50^{\circ}C$ and pH 8.0, respectively.

Sequence Analysis and Expression of Xylanase Gene (xynY) from Alkalophilic Bacillus sp. YC-335

  • Park, Young-Seo;Yum, Do-Young;Kim, Jin-Man;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.4
    • /
    • pp.224-231
    • /
    • 1993
  • The nucleotide sequence of the xylanase gene (xynY) from alkalophilic Bacillus sp. YC-335 was determined and analyzed. An open reading frame of 1, 062 base pairs for xynY gene was observed and encoded for a protein of 354 amino acids with a molecular weight of 38, 915. S1 nuclease mapping showed that the transcription initiation sites of the xynY gene were different in Bacillus sp. YC-335 and Escherichia coli HB101 (pYS55). S1 mapping also showed that -10 region of the xynY gene recognized by RNA polymerases of E. coli and Bacillus sp. YC-335 were TACAGT and TATGAT , respectively. A ribosome binding site sequence with the free energy of -17.0 Kcal/mol was observed 9 base pairs upstream from the unusual initiation codon, TTG. The proposed signal sequence consisted of 27 amino acids, 2 of which were basic amino acid residues and 21 were hydrophobic amino acid residues. When the amino acid sequences of xylanases were compared, Bacillus sp. YC-335 xylanase showed more than 50% homology with xylanases from B. pumilus, B. subtilis, and B. circulans.

  • PDF

Characterization of Water Quality and Bacteria of Leachate from Animal Carcass Disposal on the Disposal Lapse Time (매몰 시간의 경과에 따른 구제역 가축 매몰지 침출수 특성에 관한 연구)

  • Choi, Nag-Choul;Choi, Eun-Ju;Kim, Bong-Ju;Park, Jeong-Ann;Kim, Song-Bae;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.345-350
    • /
    • 2013
  • In this study, the physicochemical properties of leachate and the bacteria existence in leachate using molecular biology methods for 4 animal carcass disposals on the disposal lapse time was analyzed. The result of leachate physicochemical analysis in the middle stage (been buried 20 months) showed higher EC, DO, $HCO_3{^-}$, TOC, T-N and $SO_4{^{2-}}$ concentration compared to the first stage data (been buried 5 months). For identification of leachate using 16S rRNA method, Lysinibacillus sphaericus, Bacillus pumilus, Pseudoclavibacter helvolus, Pseudochrobactrum saccharolyticum and Corynebacterium callunae in the first stage, Bacillus cereus, Lysinibacillus sphaericus, Bacillus circulans and Corynebacterium glutamicum in the middle stage was observed, while there were detections of pathogenicity bacteria such as B. cereus and L. sphaericus. This study improves our knowledge of the fate and transport in geologic media, treatment, risk analysis on the leachate from animal carcass disposal sites.

Purification and Characterization of a Bacteriolytic Enzyme from Alkalophilic Bacillus sp.

  • Jung, Myeong-Ho;Kang, In-Soo;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.102-110
    • /
    • 1991
  • Alkalophilic Bacillus sp. YJ-451, which was isolated from soil at several area in Korea, produced a novel type of bacteriolytic enzyme (cell wall peptidoglycan hydrolase) extracellulary. The cell wall hydrolytic activity was identified as a clear zone on sodium dodecyl sulfate polyacrylamide gel electrophoresis containing 0.2% (w/v) cell wall of Bacillus sp. as substrate. This enzyme was successively purified 66 fold with 3.2% yield in culture broth by ammonium sulfate precipitation, CM-cellulose column chromatography, and gel filtration, followed by hydroxylapatite column chromatography. The molecular weight of the purified enzyme was estimated to be 27,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration column chromatography. The optimum pH and temperature for the activity of the enzyme were pH 10.0 and $50^{\circ}C$, respectively. The enzyme was stable between pH 5.0 and 10.0 and up to $40^{\circ}C$. Among the microorganisms used in this experiment the enzyme was active against most of gram negative strains and the genus Bacillus such as B. megaterium, B. licheniformis, B. circulans, B. pumilus, B. macerans, B. polymyxa. The release of dinitrophenylglutamic acid but not reducing group from cell wall peptidoglycan digested by the enzyme suggested that the enzyme is a kind of peptidase which hydrolyzes the peptide bond at the amino group of D-glutamic acid in the peptidoglycan.

  • PDF

A Phosphate Starvation-Inducible Ribonuclease of Bacillus licheniformis

  • Nguyen, Thanh Trung;Nguyen, Minh Hung;Nguyen, Huy Thuan;Nguyen, Hoang Anh;Le, Thi Hoi;Schweder, Thomas;Jurgen, Britta
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1464-1472
    • /
    • 2016
  • The BLi03719 protein of Bacillus licheniformis DSM13 belongs to the most abundant extracellular proteins under phosphate starvation conditions. In this study, the function of this phosphate starvation inducible protein was determined. An amino-acid sequence analysis of the BLi03719-encoding gene showed a high similarity with genes encoding the barnase of Bacillus amyloliquefaciens FZB42 and binase-like RNase of Bacillus pumilus SARF-032. The comparison of the control strain and a BLi03719-deficient strain revealed a strongly reduced extracellular ribonuclease activity of the mutant. Furthermore, this knockout mutant exhibited delayed growth with yeast RNA as an alternative phosphate and carbon source. These results suggest that BLi03719 is an extracellular ribonuclease expressed in B. licheniformis under phosphate starvation conditions. Finally, a BLi03719 mutant showed an advantageous effect on the overexpression of the heterologous amyE gene under phosphate-limited growth conditions.

Production of Keratinolytic Protease by Bacillus pumilus RS7 and Feather Hydrolysate As a Source of Amino Acids (Bacillus pumilus RS7에 의한 난분해성 케라틴 분해효소의 생산 및 아미노산 공급원으로서 우모 분해산물)

  • Woo, Eun-Ok;Kim, Min-Ju;Son, Hyeng-Sik;Ryu, Eun-Youn;Jeong, Seong-Yun;Son, Hong-Joo;Lee, Sang-Joon;Park, Geun-Tae
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1203-1208
    • /
    • 2007
  • Feathers are produced in huge quantities as a waste product at commercial poultry processing plants. Since feathers are almost pure keratin protein, feather wastes represent an alternative to more expensive dietary ingredients for animal feedstuffs. Generally they become feather meal used as animal feed after undergoing physical and chemical treatments. These processes require significant energy and also cause environmental pollutions. Therefore, biodegradation of feather by microorganisms represents an alternative method to prevent environment contamination. The aim of this study was to investigate cultural conditions affecting keratinolytic protease production by Bacillus pumilus RS7. We also assessed the nutritive value of microbial and alkaline feather hydrolysates, The composition of optimal medium for the keratinolytic protease was fructose 0.05%, yeast extract 0.3%, NaCl 0.05%, K2HPO4 0.03%, KH2PO4 0.04% and MgCl2 6H2O 0.01%, respectively. The optimal temperature and initial pH was $30^{\circ}C$ and 9.0, respectively. The keratinolytic protease production under optimal condition reached a maximum after 18 h of cultivation. Total amino acid content of feather hydrolysates treated by NaOH and B. pumilius RS7 was $113.8\;{\mu}g/ml$ and $504.9\;{\mu}g/ml$, respectively. Essential amino acid content of feather hydrolysates treated by NaOH and B. pumilius RS7 was $47.2\;{\mu}g/ml$ and $334.0\;{\mu}g/ml$, respectively. Thus, feather hydrolysates have the potential for utilization as an ingredient in animal feed.