• Title/Summary/Keyword: Bacillus broth

Search Result 347, Processing Time 0.021 seconds

Optimization of Culture Conditions and Analysis of Plasmid Stability of a Transformant Bacillus subtilis for Cytidine Deaminase Production

  • Kim, Soo-Hyun;Song, Bang-Ho;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.116-120
    • /
    • 1991
  • The transformant Bacillus subtilis ED213 carrying the pSO100 which cloned the cdd gene encoding cytidine deaminase (cytidine /2'-deoxycytidine aminohydrolase, EC 3.5.4.5, CDase) originated from wild type B. subtilis was cultivated in Spizizen minimal medium (SMM). To overcome poor expression of the cdd gene in SMM medium, the medium compositions and growth conditions were optimized. The optimized medium compositions and growth conditions were cytidine concentration of 80 mg/l, glycerol of 25 g/l, and $(NH_4)_2SO_4$ of 10 g/l, along with $37^{\circ}C$ and pH 7.0. The intracellular CDase production was increased 3 times from 1,000 unit/ml to 3,200 unit/ml, and extracellular CDase also increased from nearly undetectable amounts to 1,500 unit/ml. The cytidine concentration was signified as the most critical compositional factor for overproduction of CDase by increasing the cell density mainly in culture broth. The plasmids were more stable in cells that were grown in original SMM medium with stability of 90% compared to those grown in optimized SMM medium with stability of 80% after 48 hours cultivation. The most active amplification of plasmid was occurred in the logarithmic phase, which showed a value around four times higher than the initial copy number. In the exponential phase, the CDase production was closely related to the plasmid copy number along with the cell density. However, it was not accorded with cell density at the stationary phase.

  • PDF

Chemical Composition and Antimicrobial Efficacy of Helminthostachys zeylanica against Foodborne Bacillus cereus

  • Yenn, Tong Woei;Ring, Leong Chean;Zahan, Khairul Azly;Rahman, Muhammad Sharir Abdul;Tan, Wen-Nee;Alaudin, Bintul Jauza' Shaik
    • Natural Product Sciences
    • /
    • v.24 no.1
    • /
    • pp.66-70
    • /
    • 2018
  • Helminthostachys zeylanica is a rare plant grows in lightly shaded areas. The fern was traditionally used as antipyretic and antiphlogistic agents. This study was aimed to evaluate the antibacterial potential of H. zeylanica on foodborne Bacillus cereus. The chemical composition of its ethanolic extract was also determined. The plant samples were collected at Kampung Kebun Relong, Kedah, Malaysia. The ethanolic extract showed significant inhibitory activity on B. cereus with a sizeable clear zone detected on disc diffusion assay. On broth microdilution assay, the MIC of the extract on B. cereus was 6.25 mg/ml and the MBC was 12.5 mg/ml. The inhibitory activity of the extract on B. cereus was bactericidal. In the growth dynamic study, the antibacterial efficacy of the extract was concentration dependent, where a lower colony forming unit count was obtained with increased extract concentration. The SEM micrograph of extract treated B. cereus cells showed invaginations of cell wall. The bacterial cell structure collapsed after 24 h exposure to the extract. The GCMS analysis of the extract showed that the major constituents of the extract were phenol (36.26%) and quercetin (29.70%). This study is important as it shows the potential use of H. zeylanica as an effective agent to control B. cereus related infections.

Antimicrobial Effect of Kaempferol on Psychrotrophic Bacillus cereus Strains Outbreakable in Dairy Products

  • Lee, Kyoung-Ah;Moon, Sun-Hee;Kim, Kee-Tae;Nah, Seung-Yeol;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.31 no.2
    • /
    • pp.311-315
    • /
    • 2011
  • The objective of this study was to evaluate the antimicrobial effects of various natural flavonoids against growth of psychotropic Bacillus cereus strains, which cause dairy food outbreaks. Flavonoids were first screened for their ability to inhibit growth of B. cereus strains using the paper-disc diffusion test. Second, the growth inhibitory effect of selected flavonoids was evaluated in tryptic soy broth supplemented with 0.6% yeast extract, and the bactericidal effect of the flavonoids was measured in 0.8% (w/v) NaCl solution. Based on the paper-disc diffusion test, kaempferol was effectively active against B. cereus P14 and B. cereus KCCM 40935. Kaempferol had an antimicrobial effect at concentrations greater than 100 ${\mu}M$, and the numbers of B. cereus P14 and B. cereus KCCM 40935 decreased by 3.55 and 1.5 log cycles, respectively. The cell numbers of B. cereus P14 and B. cereus KCCM 40935 treated with 50 ${\mu}M$ kaempferol were reduced by 4.18 and 2.84 log cycles during a 24 h incubation to test the bactericidal effect of kaempferol (p<0.05). The results indicate that kaempferol had the greatest antimicrobial effect among the psychotropic B. cereus strains and the natural flavonoids tested.

The Production of Folic Acid by Microorganisms Isolated from Fermenting Corn Meal (옥수수 가루 발효 과정에서 분리한 미생물에 의한 Folic Acid의 생산)

  • Yoa, Fu-Gen;Marion L. Fields;Hee J. Chung
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.352-357
    • /
    • 1988
  • Twenty-five out of 35 strains isolated from fermented corn meal produced folic acid. Bacillus licheniformis strain 6 and Enterobacter cloacae strain 18 produced the largest quantities of 1830$\pm$271 ng and 1350$\pm$161 ng per 100$m\ell$ of the assay broth, respectively. B. licheniformis produced maximum yields when initial pH values were 6,7, or 8 and were incubated at 35$^{\circ}C$ for 5 days. The initial pH (range 4-8) had no effect on folic acid production by E. cloacae; 55 $^{\circ}C$ for 5 days was optimal for this bacterium. Added carbohydrates had no effect on the production of total folic acid in the bacterial cells in pure or mixed cultures. However, in their growth media, carbohydrates enhanced the production of free and total folic acid by E. cloacae and in the mixed cultures. Added carbohydrates had no significant (P < 0.05) effect on the production of free and total folic acid by B. licheniformis.

  • PDF

Secretory Overexpression of β-Agarase in Bacillus subtilis and Antibacterial Activity of Enzymatic Products (Bacillus subtilis에서 β-agarase의 분비형 과발현 및 효소분해산물의 항균활성)

  • Jang, Min-Kyung;Lee, Ok-Hee;Yoo, Ki-Hwan;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1601-1604
    • /
    • 2007
  • The gene for ${\beta}-agarase$ of an Agarivorans sp. JA-1 was expressed in Bacillus subtilis DB104, 168 and ISW1214 strains for mass-production. Among 3 host strains, B. subtilis ISW1214 secreted the highest amount of recombinant ${\beta}-agarase$ with a specific activity of 201 U/mg and 360 mg of protein into culture broth. This was approximately 130-fold higher than the production in E. coli as an expression host. Recombinant enzyme produced neoagarooligosaccharides such as neoagarohexaose, neoagarotetraose, and neoagarobiose from agar. Produced neoagarooligosaccharides showed antibacterial activities against gram-negative E. coli and gram-positive B. subtilis at a concentration of 1.5%. These data suggest that neoagarooligosaccharides could be an useful preservative for food industry.

Purification and Enzyme Property of a Cell-Wall Lytic Enzyme Produced by Bacillus sp. LM-8 against Lactobacillus plantarum. (Bacillus sp. LM-8이 생산하는 Lactobacillus plantarum 용균 효소의 정제 및 효소 특성)

  • 마호우;신원철
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • Purification and characterization of enzyme property of a cell-wall lytic enzyme against Lactobacillus plantarum were carried out. Final specific activity of purified enzyme was 5.8 units/mg and purity of the enzyme was increased 8.3 fold compared with the enzyme activity in culture broth. The molecular weight of purified enzyme was estimated to be 60,000 kDa by gel filtration and SDS-polyacrylamide gel electrophoresis. Optimal pH and temperature for the activity of this enzyme were 3.0 and 4$0^{\circ}C$, respectively. The cell-wall lytic enzyme activity was maintained at 3$0^{\circ}C$ when treating the enzyme for 30 mins, whereas the activity was decreased to 80% of the maximum level at 4$0^{\circ}C$ The enzyme activity exhibited good stability at the range of pH 4~7.

Physicochemical Properties of Agarooligosaccharides for Using as Food Stuffs (식품소재로서의 한천올리고당의 이화학적 특성)

  • Kim, Bong-Jo;Song, Chang-Moon;Ha, Soon-Duck;Hwang, Sun-Hee;Kim, Hak-Ju;Bae, Seoung-Kwon;Kong, Jai-Yul
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.284-290
    • /
    • 2000
  • A marine bacterium Bacillus cereus ASK202 showing a high agar degrading activity, was incubated in the culture medium containing agar. After incubation for 30 hr, the productivity of agarase in the culture broth reached to maximum value (160.8 units/L). As the results of TLC and HPLC analysis, agarooligosaccharides (degrees of polymerization 2, 4 and 6) were produced from the hydrolysis of agar by using the crude agarase. Physical and chemical properties of agarooligosaccharides were compared with the manufactured products of other oligosaccharides (fructooligosaccharide; isomaltooligosaccharide; maltotetraoligosaccharide) and agarooligosaccharides showed higher viscosity, higher contents of oligosaccharides, higher stability at low pH's and higher temperatures, and lower sweetness than other oligosaccharides.

  • PDF

Characterization of a Fibrinolytic Enzyme Secreted by Bacillus velezensis BS2 Isolated from Sea Squirt Jeotgal

  • Yao, Zhuang;Kim, Jeong A;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.347-356
    • /
    • 2019
  • Bacillus sp. BS2 showing strong fibrinolytic activity was isolated from sea squirt (munggae) jeotgal, a traditional Korean fermented seafood. BS2 was identified as B. velezensis by molecular biological methods. B. velezensis BS2 grows well at 15% NaCl and at $10^{\circ}C$. When B. velezensis BS2 was cultivated in TSB broth for 96 h at $37^{\circ}C$, the culture showed the highest fibrinolytic activity ($131.15mU/{\mu}l$) at 96 h. Three bands of 27, 35 and 60 kDa were observed from culture supernatant by SDS-PAGE, and fibrin zymography showed that the major fibrinolytic protein was the 27 kDa band. The gene (aprEBS2) encoding the major fibrinolytic protein was cloned, and overexpressed in heterologous hosts, B. subtilis WB600 and E. coli BL21 (DE3). B. subtilis transformant showed 1.5-fold higher fibrinolytic activity than B. velezensis BS2. Overproduced AprEBS2 in E. coli was purified by affinity chromatography. The optimum pH and temperature were pH 8.0 and $37^{\circ}C$, respectively. $K_m$ and $V_{max}$ were 0.15 mM and $39.68{\mu}M/l/min$, respectively, when N-succinyl-Ala-Ala-Pro-Phe-pNA was used as the substrate. AprEBS2 has strong ${\alpha}$-fibrinogenase and moderate ${\beta}$-fibrinogenase activity. Considering its high fibrinolytic activity, significant salt tolerance, and ability to grow at $10^{\circ}C$, B. velezensis BS2 can be used as a starter for jeotgal.

In Vitro and In Vivo Anti-Clostridioides difficile Effect of a Probiotic Bacillus amyloliquefaciens Strain

  • Islam, Md Imtiazul;Seo, Hoonhee;Redwan, Asma;Kim, Sukyung;Lee, Saebim;Siddiquee, Mashuk;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.46-55
    • /
    • 2022
  • Clostridioides difficile infection (CDI) is a significant cause of hospital-acquired and antibiotic-mediated intestinal diseases and is a growing global public health concern. Overuse of antibiotics and their effect on normal intestinal flora has increased the incidence and severity of infections. Thus, the development of new, effective, and safe treatment options is a high priority. Here, we report a new probiotic strain, Bacillus amyloliquefaciens (BA PMC-80), and its in vitro/in vivo anti-C. difficile effect as a prospective novel candidate for replacing conventional antibiotics. BA PMC-80 showed a significant anti-C. difficile effect in coculture assay, and its cell-free supernatant (CFS) also exhibited a considerable anti-C. difficile effect with an 89.06 ㎍/ml 50% minimal inhibitory concentration (MIC) in broth microdilution assay. The CFS was stable and equally functional under different pHs, heat, and proteinase treatments. It also exhibited a high sensitivity against current antibiotics and no toxicity in subchronic toxicity testing in hamsters. Finally, BA PMC-80 showed a moderate effect in a hamster CDI model with reduced infection severity and delayed death. However, further studies are required to optimize the treatment condition of the hamster CDI model for better efficacy and identify the antimicrobial compound produced by BA PMC-80.

Biological Control of Anthracnose (Colletotrichum gloeosporioides) in Red Pepper by Bacillus sp. CS-52 (Bacillus sp. CS-52를 이용한 고추 탄저병 (Colletotrichum gloeosporioides) 방제 특성)

  • Kwon, Joung-Ja;Lee, Jung-Bok;Kim, Beam-Soo;Lee, Eun-Ho;Kang, Kyeong-Muk;Shim, Jang-Sub;Joo, Woo-Hong;Jeon, Chun-Pyo;Kwon, Gi-Seok
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.201-209
    • /
    • 2014
  • This study was carried out in order to develop a biological control of anthracnose of red pepper caused by fungal pathogens. In particular, this study focuses on the Colletotrichum species, which includes important fungal pathogens causing a great deal of damage to red pepper. Antagonistic bacteria were isolated from the soil of pepper fields, which were then tested for biocontrol activity against the Colletotrichum gloeosporioides anthracnose pathogen of pepper. Based on the 16S rRNA sequence analysis, the isolated bacterial strain CS-52 was identical to Bacillus sp. The culture broth of Bacillus sp. CS-52 had antifungal activity toward the hyphae and spores of C. gloeosporioides. Moreover, the substances with antifungal activity were optimized when Bacillus sp. CS-52 was grown aerobically in a medium composed of 0.5% glucose, 0.7% $K_2HPO_4$, 0.2% $KH_2PO_4$, 0.3% $NH_4NO_3$, 0.01% $MnSO_4{\cdot}7H_2O$, and 0.15% yeast extract at $30^{\circ}C$. The inhibition of spore formation resulting from cellulase, siderophores, and indole-3-acetic acid (IAA), were produced at 24 h, 48 h, and 72 h, respectively. Bacillus sp. CS-52 also exhibited its potent fungicidal activity against anthracnose in an in vivo test, at a level of 70% when compared to chemical fungicides. These results identified substances with antifungal activity produced by Bacillus sp. CS-52 for the biological control of major plant pathogens in red pepper. Further studies will investigate the synergistic effect promoting better growth and antifungal activity by the formulation of substances with antifungal activity.