Browse > Article
http://dx.doi.org/10.4014/jmb.2107.07057

In Vitro and In Vivo Anti-Clostridioides difficile Effect of a Probiotic Bacillus amyloliquefaciens Strain  

Islam, Md Imtiazul (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Seo, Hoonhee (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Redwan, Asma (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Kim, Sukyung (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Lee, Saebim (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Siddiquee, Mashuk (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Song, Ho-Yeon (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.1, 2022 , pp. 46-55 More about this Journal
Abstract
Clostridioides difficile infection (CDI) is a significant cause of hospital-acquired and antibiotic-mediated intestinal diseases and is a growing global public health concern. Overuse of antibiotics and their effect on normal intestinal flora has increased the incidence and severity of infections. Thus, the development of new, effective, and safe treatment options is a high priority. Here, we report a new probiotic strain, Bacillus amyloliquefaciens (BA PMC-80), and its in vitro/in vivo anti-C. difficile effect as a prospective novel candidate for replacing conventional antibiotics. BA PMC-80 showed a significant anti-C. difficile effect in coculture assay, and its cell-free supernatant (CFS) also exhibited a considerable anti-C. difficile effect with an 89.06 ㎍/ml 50% minimal inhibitory concentration (MIC) in broth microdilution assay. The CFS was stable and equally functional under different pHs, heat, and proteinase treatments. It also exhibited a high sensitivity against current antibiotics and no toxicity in subchronic toxicity testing in hamsters. Finally, BA PMC-80 showed a moderate effect in a hamster CDI model with reduced infection severity and delayed death. However, further studies are required to optimize the treatment condition of the hamster CDI model for better efficacy and identify the antimicrobial compound produced by BA PMC-80.
Keywords
Clostridioides difficile; Bacillus amyloliquefaciens; BA PMC-80; probiotic; antibiotic;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Johnson S. 2009. Recurrent Clostridium difficile infection: causality and therapeutic approaches. Int. J. Antimicrob. Agents 33 Suppl 1: S33-36.   DOI
2 Kelly CP. 2012. Can we identify patients at high risk of recurrent Clostridium difficile infection? Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 18 Suppl 6: 21-27.
3 Chai J, Lee CH. 2018. Management of primary and recurrent Clostridium difficile infection: an update. Antibiotics 7: 54.   DOI
4 Abougergi MS, Kwon JH. 2011. Intravenous immunoglobulin for the treatment of Clostridium difficile infection: a review. Dig. Dis. Sci. 56: 19-26.   DOI
5 Wilcox MH, Gerding DN, Poxton IR, Kelly C, Nathan R, Birch T, et al. 2017. Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N. Engl. J. Med. 376: 305-317.   DOI
6 Kociolek LK, Gerding DN. 2016. Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat. Rev. Gastroenterol. Hepatol. 13: 150-160.   DOI
7 Bartlett JG, Moon N, Chang TW, Taylor N, Onderdonk AB. 1978. Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology 75: 778-782.   DOI
8 de Bruyn G, Saleh J, Workman D, Pollak R, Elinoff V, Fraser NJ, et al. 2016. Defining the optimal formulation and schedule of a candidate toxoid vaccine against Clostridium difficile infection: a randomized Phase 2 clinical trial. Vaccine 34: 2170-2178.   DOI
9 Sougioultzis S, Kyne L, Drudy D, Keates S, Maroo S, Pothoulakis C, et al. 2005. Clostridium difficile toxoid vaccine in recurrent C. difficile-associated diarrhea. Gastroenterology 128: 764-770.   DOI
10 Chen XH, Scholz R, Borriss M, Junge H, Mogel G, Kunz S, et al. 2009. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140: 38-44.   DOI
11 Kotowska M, Albrecht P, Szajewska H. 2005. Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea in children: a randomized double-blind placebo-controlled trial. Aliment. Pharmacol. Ther. 21: 583-590.   DOI
12 Marahier MA, Nakano MM, Zuber P. 1993. Regulation of peptide antibiotic production in Bacillus. Mol. Microbiol. 7: 631-636.   DOI
13 Cho Y-H, Hong S-M, Kim C-H. 2013. Isolation and characterization of lactic acid bacteria from Kimchi, Korean traditional fermented food to apply into fermented dairy products. Food Sci. Anim. Resour. 33: 75-82.   DOI
14 Rolfe RD. 2000. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130: 396S-402S.   DOI
15 Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.   DOI
16 Tamariz-Angeles C, Olivera-Gonzales P, Villena GK, GutiA©rrez-Correa M. 2014. Isolation and identification of cellulolytic and xylanolytic bacteria from huancarhuaz hot spring, Peru. Annu. Res. Rev. Biol. 4: 2920-2930.   DOI
17 Gao XW, Mubasher M, Fang CY, Reifer C, Miller LE. 2010. Dose-response efficacy of a proprietary probiotic formula of Lactobacillus acidophilus CL1285 and Lactobacillus casei LBC80R for antibiotic-associated diarrhea and Clostridium difficile-associated diarrhea prophylaxis in adult patients. Am. J. Gastroenterol. 105: 1636-1641.   DOI
18 Shokryazdan P, Faseleh Jahromi M, Liang JB, Kalavathy R, Sieo CC, Ho YW. 2016. Safety assessment of two new Lactobacillus strains as probiotic for human using a rat model. PLoS One 11: e0159851.   DOI
19 Colomb-Cotinat M, Assouvie L, Durand J, Daniau C, Leon L, Maugat S, et al. 2019. Epidemiology of Clostridioides difficile infections, France, 2010 to 2017. Eurosurveillance 24: 1800638.
20 Kotloff KL, Wasserman SS, Losonsky GA, Thomas W, Nichols R, Edelman R, et al. 2001. Safety and immunogenicity of increasing doses of a Clostridium difficile toxoid vaccine administered to healthy adults. Infect. Immun. 69: 988-995.   DOI
21 Sambol SP, Merrigan MM, Tang JK, Johnson S, Gerding DN. 2002. Colonization for the prevention of Clostridium difficile disease in hamsters. J. Infect. Dis. 186: 1781-1789.   DOI
22 Benitez L, Correa A, Daroit D, Brandelli A. 2011. Antimicrobial activity of Bacillus amyloliquefaciens LBM 5006 is enhanced in the presence of Escherichia coli. Curr. Microbiol. 62: 1017-1022.   DOI
23 Benitez LB, Velho RV, Lisboa MP, da Costa Medina LF, Brandelli A. 2010. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J. Microbiol. 48: 791-797.   DOI
24 Abutaleb NS, Seleem MN. 2021. In vivo efficacy of auranofin in a hamster model of Clostridioides difficile infection. Sci. Rep. 11: 7093.   DOI
25 Hairul Islam VI, Prakash Babu N, Pandikumar P, Ignacimuthu S. 2011. Isolation and characterization of putative probiotic bacterial strain, Bacillus amyloliquefaciens, from north east Himalayan soil based on in vitro and in vivo functional properties. Probiotics Antimicrob. Proteins 3: 175-185.   DOI
26 Wong JH, Hao J, Cao Z, Qiao M, Xu H, Bai Y, et al. 2008. An antifungal protein from Bacillus amyloliquefaciens. J. Appl. Microbiol. 105: 1888-1898.   DOI
27 Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF. 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5: 1571-1579.   DOI
28 Islam MI, Han CM, Seo H, Kim S, Mahmud HA, Nam KW, et al. 2019. In vitro activity of DNF-3 against drug-resistant Mycobacterium tuberculosis. Int. J. Antimicrob. Agents 54: 69-74.   DOI
29 Ben Ayed H, Nasri R, Jemil N, Ben Amor I, Gargouri J, Hmidet N, et al. 2015. Acute and sub-chronic oral toxicity profiles of lipopeptides from Bacillus mojavensis A21 and evaluation of their in vitro anticoagulant activity. Chem. Biol. Interact. 236: 1-6.   DOI
30 Ji J, Hu S, Li W. 2013. Probiotic Bacillus amyloliquefaciens SC06 prevents bacterial translocation in weaned mice. Indian J. Microbiol. 53: 323-328.   DOI
31 Edwards AN, McBride SM. 2016. Isolating and purifying Clostridium difficile spores, pp. 117-128, In Roberts AP, Mullany P (eds.), Clostridium difficile: Methods and Protocols. Springer, New York, NY. USA.
32 Lee J-S, Chung M-J, Seo J-G. 2013. In Vitro Evaluation of Antimicrobial activity of lactic acid bacteria against Clostridium difficile. Toxicol. Res. 29: 99-106.   DOI
33 Wu L, Wu H, Chen L, Yu X, Borriss R, Gao X. 2015. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci. Rep. 5: 12975.   DOI
34 Kim PI, Chung KC. 2006. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 234: 177-183.   DOI
35 Borriello SP, Ketley JM, Mitchell TJ, Barclay FE, Welch AR, PRICE AB, et al. Clostridium difficile-a spectrum of virulence and analysis of putative virulence determinants in the hamster model of antibiotic-associated colitis. J. Med. Microbiol. 24: 53-64.   DOI
36 Trzasko A, Leeds JA, Praestgaard J, LaMarche MJ, McKenney D. 2012. Efficacy of LFF571 in a hamster model of Clostridium difficile infection. Antimicrob. Agents Chemother. 56: 4459-4462.   DOI
37 Borah T, Gogoi B, Khataniar A, Gogoi M, Das A, Borah D. 2019. Biocatalysis and agricultural biotechnology probiotic characterization of indigenous Bacillus velezensis strain DU14 isolated from Apong, a traditionally fermented rice beer of Assam. Biocatal. Agric. Biotechnol. 18: 101008.   DOI
38 Monteiro CRAV, do Carmo MS, Melo BO, Alves MS, Dos Santos CI, Monteiro SG, et al. 2019. In Vitro antimicrobial activity and probiotic potential of Bifidobacterium and Lactobacillus against species of Clostridium. Nutrients 11: E448.
39 Levy DG, Stergachis A, McFarland LV, Van Vorst K, Graham DJ, Johnson ES, et al. 2000. Antibiotics and Clostridium difficile diarrhea in the ambulatory care setting. Clin. Ther. 22: 91-102.   DOI
40 Blaabjerg S, Artzi DM, Aabenhus R. 2017. Probiotics for the prevention of antibiotic-associated diarrhea in outpatients-A systematic review and meta-analysis. Antibiotics 6: 21.   DOI
41 Hu HQ, Li XS, He H. 2010. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biol. Control 54: 359-365.   DOI
42 Geeraerts S, Delezie E, Ducatelle R, Haesebrouck F, Devreese B, Immerseel FV. 2016. Vegetative Bacillus amyloliquefaciens cells do not confer protection against necrotic enteritis in broilers despite high antibacterial activity of its supernatant against Clostridium perfringens in vitro. Br. Poult. Sci. 57: 324-329.   DOI
43 S Geeraerts, R Ducatelle, F Haesebrouck, F Van Immerseel. 2015. Bacillus amyloliquefaciens as prophylactic treatment for Clostridium difficile-associated disease in a mouse model. J. Gastroenterol. Hepatol. 30: 1275-1280.   DOI
44 Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. 2015. Burden of Clostridium difficile Infection in the United States. N. Engl. J. Med. 372: 825-834.   DOI
45 Kato H, Senoh M, Honda H, Fukuda T, Tagashira Y, Horiuchi H, et al. 2019. Clostridioides (Clostridium) difficile infection burden in Japan: a multicenter prospective study. Anaerobe 60: 102011.   DOI
46 Evans CT, Safdar N. 2015. Current trends in the epidemiology and outcomes of Clostridium difficile infection. Clin. Infect. Dis. 60: S66-S71.   DOI
47 McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. 2018. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66: e1-e48.   DOI
48 McFarland LV. 1998. Epidemiology, risk factors and treatments for antibiotic-associated diarrhea. Dig. Dis. 16: 292-307.   DOI
49 Rao K, Young VB. 2015. Fecal microbiota transplantation for the management of Clostridium difficile infection. Infect. Dis. Clin. North Am. 29: 109-122.   DOI
50 Vyas D, Aekka A, Vyas A. 2015. Fecal transplant policy and legislation. World J. Gastroenterol. WJG 21: 6-11.   DOI
51 CDC. 2021. Antibiotic-resistant Germs: New Threats. Available from https://www.cdc.gov/drugresistance/biggest-threats.html. Accessed Jul. 25, 2021.
52 Curcio D, Cane A, Fernandez FA, Correa J. 2019. Clostridium difficile-associated diarrhea in developing countries: a systematic review and meta-analysis. Infect. Dis. Ther. 8: 87-103.   DOI
53 Greenberg RN, Marbury TC, Foglia G, Warny M. 2012. Phase I dose finding studies of an adjuvanted Clostridium difficile toxoid vaccine. Vaccine 30: 2245-2249.   DOI
54 Katz JA. 2006. Probiotics for the prevention of antibiotic-associated diarrhea and Clostridium difficile diarrhea. J. Clin. Gastroenterol. 40: 249-255.   DOI
55 Basu S, Chatterjee M, Ganguly S, Chandra PK. 2007. Effect of Lactobacillus rhamnosus GG in persistent diarrhea in Indian children: a randomized controlled trial. J. Clin. Gastroenterol. 41: 756-760.   DOI
56 Khattab RA, Ahmed NA, Ragab YM, Rasmy SA. 2020. Bacteria producing antimicrobials against Clostridium difficile isolated from human stool. Anaerobe 63: 102206.   DOI
57 Jeon H-L, Lee N-K, Yang S-J, Kim W-S, Paik H-D. 2017. Probiotic characterization of Bacillus subtilis P223 isolated from kimchi. Food Sci. Biotechnol. 26: 1641-1648.   DOI
58 Karska-Wysocki B, Bazo M, Smoragiewicz W. 2010. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol. Res. 165: 674-686.   DOI
59 DeFilipp Z, Bloom PP, Torres Soto M, Mansour MK, Sater MRA, Huntley MH, et al. 2019. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381: 2043-2050.   DOI
60 Cao H, He S, Wei R, Diong M, Lu L. 2011. Bacillus amyloliquefaciens G1: A Potential Antagonistic Bacterium against Eel-Pathogenic Aeromonas hydrophila. Evid.-Based Complement. Altern. Med. ECAM 2011: 824104.