• Title/Summary/Keyword: Bacillus Bacillus licheniformis

Search Result 340, Processing Time 0.022 seconds

Selection and Characterization of Bacillus licheniformis MH48 for the Biocontrol of Pine Wood Nematode (Bursaphelenchus xylophilus) (소나무재선충 생물학적 방제를 위한 Bacillus licheniformis MH48의 선발 및 특성 규명)

  • Jeong, Min-Hae;Yang, Seo-Young;Lee, Yong-Sung;Ahn, Young-Sang;Park, Yun-Serk;Han, Hye-rim;Kim, Kil-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.3
    • /
    • pp.512-518
    • /
    • 2015
  • Pine wilt disease (PWD) caused by pine wood nematode, Bursaphelenchus xylophilus, has become the most serious threat to pine trees in Korea. This study was subjected to investigate effective biological control agent against PWD. To select nematocidal bacteria against PWD, Bacillus licheniformis MH48 was selected among five bacteria due to its high nematocidal potential. B. licheniformis MH48 was tested for cell growth and protease activity to evaluate its nematicidal potential. In the B. licheniformis MH48, cell numbers were highest three days after incubation, while protease activity was highest after seven days. In the effect of different concentrations of B. licheniformis MH48 culture broth against B. xylophilus, 20% concentration of culture broth showed approximately 80% of pine wood nematode mortality compared to the control. Especially, pine wood nematode's cuticle layers were degraded two days after treatment of B. licheniformis MH48 culture broth. The present study suggests that B. licheniformis MH48 can be one of the potential biocontrol candidates against pine wood nematode due to its ability to produce protease.

Characterization of a Bacteriocin Produced by Bacillus licheniformis cy2 (Bacillus licheniformis cy2가 생산하는 박테리오신의 특성)

  • 장지윤;이현희;김인철;장해춘
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.3
    • /
    • pp.410-414
    • /
    • 2001
  • A new bacteriocin produced by Bacillus licheniformis cy2 was partially purified and characterized. The bacteriocin named as BSCY2 was stable in the pH range of 2.5~9.5. BSCY2 was stable below 4$0^{\circ}C$ and it retained its antimicrobial activity during long tern storage at -2$0^{\circ}C$ and -7$0^{\circ}C$. BSCY2 was inactivated 15 min exposure to temperatures over 8$0^{\circ}C$ and lost 50% of its antimicrobial activity within 2 hr at 7$0^{\circ}C$. BSCY2 was inactivated by proteinase K treatment, which indicates its proteinous nature. Direct detection of the BSCY2 band showing antimicobial activity on Tricine-SDS-PAGE suggested an apparent molecular mass of about 6,500 dalton. These characterizatics of BSCY2 are considered as potential compounds for use in bioindustry.

  • PDF

Production of Endoglucanase, Beta-glucosidase and Xylanase by Bacillus licheniformis Grown on Minimal Nutrient Medium Containing Agriculture Residues

  • Seo, J.;Park, T.S.;Kim, J.N.;Ha, Jong K.;Seo, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.946-950
    • /
    • 2014
  • Bacillus licheniformis was grown in minimal nutrient medium containing 1% (w/v) of distillers dried grain with soluble (DDGS), palm kernel meal (PKM), wheat bran (WB) or copra meal (CM), and the enzyme activity of endoglucanase, ${\beta}$-glucosidase, xylanase and reducing sugars was measured to investigate a possibility of using cost-effective agricultural residues in producing cellulolytic and hemicellulolytic enzymes. The CM gave the highest endoglucanase activity of 0.68 units/mL among added substrates at 48 h. CM yielded the highest titres of 0.58 units/ml of ${\beta}$-glucosidase, compared to 0.33, 0.23, and 0.16 units/mL by PKM, WB, and DDGS, respectively, at 72 h. Xylanase production was the highest (0.34 units/mL) when CM was added. The supernatant from fermentation of CM had the highest reducing sugars than other additional substrates at all intervals (0.10, 0.12, 0.10, and 0.11 mg/mL respectively). It is concluded that Bacillus licheniformis is capable of producing multiple cellulo- and hemicellololytic enzymes for bioethanol production using cost-effective agricultural residues, especially CM, as a sole nutrient source.

Selective Plugging Strategy Based Microbial Enhanced Oil Recovery Using Bacillus licheniformis TT33

  • Suthar, Harish;Hingurao, Krushi;Desai, Anjana;Nerurkar, Anuradha
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1230-1237
    • /
    • 2009
  • The selective plugging strategy of Microbial Enhanced Oil Recovery (MEOR) involves the use of microbes that grow and produce exopolymeric substances, which block the high permeability zones of an oil reservoir, thus allowing the water to flow through the low permeability zones leading to increase in oil recovery. Bacillus licheniformis TT33, a hot water spring isolate, is facultatively anaerobic, halotolerant, and thermotolerant. It produces EPS as well as biosurfactant and has a biofilm-forming ability. The viscosity of its cell-free supernatant is $120\;mPa{\cdot}s$ at $28^{\circ}C$. Its purified EPS contained 26% carbohydrate and 3% protein. Its biosurfactant reduced the surface tension of water from 72 to 34 mN/m. This strain gave $27.7{\pm}3.5%$ oil recovery in a sand pack column. Environmental scanning electron microscopy analysis showed bacterial growth and biofilm formation in the sand pack. Biochemical tests and Amplified Ribosomal DNA Restriction Analysis confirmed that the oil recovery obtained in the sand pack column was due to Bacillus licheniformis TT33.

내열성 Chitinase 생산균주의 분리 및 효소생산 특성

  • Hong, Bum-Shik;Yoon, Ho-Geun;Shin, Dong-Hoon;Cho, Hong-Yon
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.560-566
    • /
    • 1996
  • A strain capable of producing thermostable chitinase suitable for chitooligosaccharide production was isolated from high temperature environment and identified as Bacillus licheniformis. The chitinase from Bacillus licheniformis KFB-Cl4 was only induced by addition of colloidal thitin into the basal medium as carbon source, showing the decrease of the chitinase production by supplernental addition of other carbon sources into the medium containing 1.0% colloidal chitin. Among organic and inorganic nitrogen sources, yeast extract was the most effective for the increase of total activity and specific activity, and had high affinity for the enzyme production. The optimum temperature of cell growth and thermostable chitinase production was 55$\circ$C. The optimum culture medium was composed of 1.2% colloidal chitin, 0.15% K$_{2}$HPO$_{4}$, 0.05% KH$_{2}$PO$_{4}$, 0.01% MgSO$_{4}$-7H$_{2}$O, 0.1% yeast extract (pH 6.5). Bacillus licheniformis KFB-C14 produced the thermostable chitinase of 3.89 units per ml culture fluid and 7.4 units per mg protein under rotary shaking at 150 rpm for 40 hr.

  • PDF

Development of a Molecular Selection Marker for Bacillus licheniformis K12 (Bacillus licheniformis K12 균주 분자 선발 마커 개발)

  • Young Jin Kim;Sam Woong Kim;Tae Wok Lee;Won-Jae Chi;Woo Young Bang;Ki Hwan Moon;Tae Wan Kim;Kyu Ho Bang;Sang Wan Gal
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.808-819
    • /
    • 2023
  • This study was conducted to develop a selection marker for the identification of the Bacillus licheniformis K12 strain in microbial communities. The strain not only demonstrates good growth at moderate temperatures but also contains enzymes that catalyze the decomposition of various polymer materials, such as proteases, amylases, cellulases, lipases, and xylanases. To identify molecular markers appropriate for use in a microbial community, a search was conducted to identify variable gene regions that show considerable genetic mutations, such as recombinase, integration, and transposase sites, as well as phase-related genes. As a result, five areas were identified that have potential as selection markers. The candidate markers were two recombinase sites (BLK1 and BLK2), two integration sites (BLK3 and BLK4), and one phase-related site (BLK5). A PCR analysis performed with different Bacillus species (e.g., B. licheniformis, Bacillus velezensis, Bacillus subtilis, and Bacillus cereus) confirmed that PCR products appeared at specific locations in B. licheniformis: BLK1 in recombinase, BLK2 in recombinase family protein, and BLK3 and BLK4 as site-specific integrations. In addition, BLK1 and BLK3 were identified as good candidate markers via a PCR analysis performed on subspecies of standard B. licheniformis strains. Therefore, the findings suggest that BLK1 can be used as a selection marker for B. licheniformis species and subspecies in the microbiome.

Anti-fatigue and Hepatoprotective Effects of Fermented Antler (발효녹용의 항피로 및 간장보호 효과)

  • Shim, Joo-Won;Kim, Nam-Jae;Kim, Young-Su;Kim, Dong-Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.1
    • /
    • pp.54-58
    • /
    • 2012
  • To increase the extraction yield and biological effect of antler by fermentation, probiotics fermenting antler were screened from rice shells. Of screened Bacillus species, the most potently antler-degrading probiotics was Bacillus KH-07. The supernatant yield of fermented antler is highest. Bacillus KH-07 may belong to Bacillus licheniformis by biochemical and 16S rDNA sequencing analyses. The KH-07-fermented antler (50 mg/kg) increased the anti-fatigue effect 2.3-fold compared to that of non-treated antler. Furthermore, the KH-07-fermented antler improved $CCl_4$-induced liver injury in mice. Based on these findings, the extraction yield and biological effect of antler can be increased by KH-07 fermentation.

Characterization of the Bacillus licheniformis WL-12 Mannanase from a Recombinant Escherichia coli (재조합 대장균으로부터 생산된 Bacillus licheniformis WL-12의 Mannanase 특성)

  • Yoon, Ki-Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.2
    • /
    • pp.71-76
    • /
    • 2010
  • A gene encoding the mannanase of Bacillus licheniformis WL-12, which had been isolated from Korean soybean paste, was cloned into Escherichia coli and nucleotide sequence of the mannanase gene was subsequently determined. The mannanase gene consisted of 1,080 nucleotides encoding a polypeptide of 360 amino acid residues. The deduced amino acid sequence was identical to that of putative mannanase from B. liceniformis DSM13 belonging to GH family 26. The mannanase was partially purified from cell-free extract of the recombinant Escherichia coli carrying a WL-12 mannanase gene by ammonium sulfate fractionation and DEAE-Sepharose column chromatography. Optimal conditions for the partially purified enzyme occurred at pH 6.0 and $65^{\circ}C$. The enzyme showed higher activity on locust bean gum (LBG) galactomannan and konjac glucomannan than on guar gum galactomannan. The predominant products resulting from the mannanase hydrolysis were mannose, mannobiose and mannotriose for LBG or mannooligosaccharides. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose.

Characterization of Extracellular $\alpha$-Galactosidase Produced by Bacillus licheniformis YB-42. ($\alpha$-Galactosidase를 생산하는 Bacillus lichennformis YB-42의 분리와 효소 특성)

  • 김현숙;이경섭;소재호;이미성;최준호;윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.128-134
    • /
    • 2004
  • A bacterium producing the $\alpha$-galactosidase was isolated from Korean soybean paste. The isolate YB-42 has been identified as Bacillus licheniformis on the basis on its 16S rRNA sequence, morphology and biochemical properties. The $\alpha$-galactosidase activity was detected in both the culture supernatant and the cell extract of B. licheniformis YB-42. The partially purified extracellular $\alpha$-galactosidase was obtained from the culture supernatant by DEAE-Sepharose column and Q-Sepharose column chromatography. The enzyme showed the maximum activity for hydrolysis of para-nitrophenyl-$\alpha$-D-galactopyranoside (pNP-$\alpha$Gal) at pH 6.5 and $45^{\circ}C$. It was able to hydrolyze oligomeric substrates such as melibiose, raffmose and stachyose to liberate galactose residue, indicating that the a-galactosidase of B. licheniformis YB-42 hydrolyzed $\alpha$-1,6 linkage. The hydrolyzing activity of $\alpha$-galactosidase for both pNP-$\alpha$Gal and melibiose was dramatically decreased by galactose. Both glucose and mannose inhibited the activity for pNP-$\alpha$Gal less than galactose.

Characterization of ${\beta}$-1,4-Glucanase Activity of Bacillus licheniformis B1 in Chungkookjang (청국장 발효균주 Bacillus licheniformis B1의 ${\beta}$-1,4-glucanase 특성)

  • Hwang, Jae-Sung;Yoo, Hyung-Jae;Kim, Sung-Jo;Kim, Han-Bok
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.69-73
    • /
    • 2008
  • Fermented soybeans contain microorganisms, diverse enzymes, and bioactive compounds. Few studies on cellulase in Chungkookjang exist. Oligosaccharides play diverse roles of bioactivity. Through Congo red test and activity staining, it was confirmed that the enzyme solution contained cellulase. Optimal pH and temperature of the cellulase produced by Bacillus licheniformis B1 were 10 and $40^{\circ}C$, respectively. Through TLC analysis, it was demonstrated that the enzyme solution degraded carboxymethyl cellulose (CMC), whose main products contained dimer and trimer oligosaccharides. Cellulase activity of barley-Chungkookjnag fermented by the strain increased, compared with that of Chungkookjang. The cellulase was found to be a ${\beta}$-1,4-glucanase through the analysis of the cloned gene, showing polymorphism at 32 amino acid sites in the coding range of amino acid 10 and 460.