• Title/Summary/Keyword: Bacillus 미생물

Search Result 2,373, Processing Time 0.03 seconds

Complete genome sequence of Bacillus halotolerans F41-3 isolated from wild flower in Korea (야생화로부터 분리한 Bacillus halotolerans F41-3 균주의 전체 게놈서열)

  • Heo, Jun;Kim, Soo-Jin;Kim, Jeong-Seon;Hong, Seung-Beom;Kwon, Soon-Wo
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.306-308
    • /
    • 2019
  • A number of Bacillus strains are known to have antimicrobial activity useful in various fields. In order to prevent Propionibacterium acnes, which is one of the factors of acne, we selected Bacillus halotolerans F41-3 which have high antimicrobial activities against P. acnes. We conducted complete genome sequencing of B. halotolerans F41-3 and analyzed genomic characteristics. This genome size is 4,144,458 bp with a G + C content of 43.76%, 4,145 total genes and 3,686 protein coding genes. Among the genes, we found that gene clulster of subtilosin, a kind of bacteriocin, synthesis and gene cluster of nickel transportation. Both of them may influence inhibition of P. acnes.

Effects of Phytophthora Blight-antagonistic Microorganisms Bacillus subtilis AH18 and Bacillus licheniformis K11 on the Soil Microbial Community (고추역병 길항미생물 Bacillus subtilis AH18과 Bacillus licheniformis K11의 토양미생물 생태에 미치는 영향)

  • Park, Kee-Choon;Lim, Jong-Hui;Kim, Sang-Dal;Yi, Young-Keun
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.3
    • /
    • pp.121-125
    • /
    • 2009
  • We measured the influence of antifungal antagonists Bacillus subtilis AH18 and Bacillus licheniformis K11 on soil microbial community in microcosms. Both antifungal antagonists were confirmed to suppress hot pepper phytophthora blight. Phospholipid fatty acids (PLFA) were analyzed to investigate the soil microbial community. B. subtilis AH18 changed the total PLFA composition and bio-indicators of PLFA, compared with other treatments. B. subtilis AH18 decreased the proportion of bacteria and gram negative/gram positive bacteria, and increased the fungi/bacteria and anaerobic/aerobic microorganisms. In addition cy19:0/18:$1{\omega}7c$, which means adaptation to unfavorable environmental conditions, was increased by the application of B. subtilis AH18. On the other hand the inoculation of B. licheniformis K11 or combined inoculation of both antifungal strains did not affect soil microbial community. The suppression of phytophthora blight and preservation of indigenous soil microbial community may be achieved by the combined application of B. subtilis AH18 and B. licheniformis K11.

Characterization of Endogeneous Plasmids from Two Bacillus Isolates (Bacillus 속 분리균 2종의 내재형 Plasmids 특성분석)

  • 윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.364-369
    • /
    • 1999
  • In order to obtain the suitable plasmids for constructing plasmid vectors of Bacillus species, endogeneous plasmid DNAs were screended from thermo-tolerant soil bacteria. Based on agarose gel electrophoresis patterns of the isolated plasmid DNAs, two strains harboring small-size plasmids were selected. The isolated were identified to belong to the genus Bacillus on the basis of their morphological and biochemical properties, and named Bacillus sp. 3-3 and 77-8, respectively. The restriction endonuclease maps were determined for four plasmids including two plasmids from each Bacillus isolates. It is interesting that Bacillus sp. 3-3 and 77-8 have an identical plasmid according to the restriction maps. The three kinds of hybrid plasmids constructed by introducing each plasmid of two isolates into a Escherichia coli plasmid vector. pUCCm18 containing chloramplenicol resistance gene active in Bacillus strains, could be replicated in B. subtilis and B. licheniformis. These plasmids are very stable in B. subtilis, suggesting that the Bacillus plasmids identified in this work would be useful for development of new cloning vectors for Bacillus strains.

  • PDF

Growth Effect of Tomato Treated with Bacillus sp. WRD-1 Cultures (Bacillus sp. WRD-1 배양액 처리가 토마토 생육에 미치는 영향)

  • Ok, Min;Seo, Won-Seok;Bae, Kye-Sun;Kwon, O-Chang;Park, Su-Jin;Cho, Young-Su
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.63-66
    • /
    • 2001
  • To investgate growth effect of tomato by Bacillus sp. WRD-1 isolated from soil, the Bacillus sp. WRD-1 cultures were treated into tomato cultivated soil with different dilutions (1:100, 1:300, and 1:500) and autoclaved Bacillus cultures as control. Growth and yeild of tomato enhanced in treatments of the Bacillus cultures compared to control. The populations of native bacteria and actinomyces were increased twice in field treated with Bacillus sp. WRD-1 cultures, but the number of mold was decreased. Since the Bacillus sp. WRD-1 promoted growth of tomato and affected population dynamics of microorganism in field, this strain is prominent candidate as a microbial biocide to improve soil potential.

  • PDF

Mixed Bacillus sp. BOD sensor (혼합 Bacillus sp. BOD 센서)

  • Kang, Tae Young;Park, Hyun Joo;Park, Kyeong Ryang;Kim, Jin Doo;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • The BOD (biochemical oxygen demand) sensor was fabricated by covering a dissolved oxygen (DO) probe with a microbe-impregnated membrane and a dialysis membrane. Various microorganisms isolated from the soils, water and activated sludge have been evaluated for measuring biochemical oxygen demand (BOD); Bacillus species HN24 and HN93 were selected as they exhibited rapid oxygen consumption and fast recovery. Improved BOD sensor could be prepared by using mixed microbes (Bacillus subtilis, Bacillus sp. HN24 and Bacillus sp. NH93) and silicon rubber gas-permeable membrane for DO probe, and by bubbling 50% $O_2$ ($N_2$ valence) through background buffer solution. This system exhibited excellent analytical performance resulting in good linearity ($r^2=0.9986$) from 0 to 100 mg/L level of BOD.

Diversity and Succession of the Bacterial Community during the Initial Fermentation Period in Modernized Soy Sauce (Ganjang) (개량식 간장의 발효 초기 단계에서의 미생물 다양성 및 천이에 관한 연구)

  • Ho Jin Jeong;Gwangsu Ha;Jungmi Lee;Yeji Song;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.481-489
    • /
    • 2023
  • The taste and quality of soy sauce, a fermented liquid condiment, is greatly influenced by microbial metabolism during fermentation. To investigate the microbiological characteristics of ganjang during the initial fermentation process, we prepared meju (fermented soybean) blocks fermented with starter cultures and solar salts and analyzed the microbial community quantitively using 16S rRNA gene profiling from ganjang that had been fermented over a five-week period. The ganjang samples were collected and analyzed after soaking for week one (1W), three (3W), and five (5W) weeks. We found that Halomonadaceae was significantly higher in the 1W group (89.83%) than the 3W and 5W groups (14.46%, and 13.78%, respectively). At a species level, Chromohalobacter beijerinckii and Chromohalobacter canadensis were the dominant species in the 1W group but several taxa such as Bacillus subtilis, Pediococcus acidilactici, and Enterococcus faecalis were more abundant in the 3W and 5W groups. Pearson correlation analysis of the relative abundance of the bacteria showed a negative correlation between Chromohalobacter and two bacterial genera Bacillus and Enterococcus. Beta-diversity showed a statistical distinction between the 1W and the 3W and 5W groups, while no significance was evident between the 3W and 5W groups. Linear discriminant effect size analysis was used to identify biomarkers and significant differences in the relative abundance of several halophilic bacteria, Bacillus sp. and lactic acid bacteria at 1W, 3W, and 5W, recpectively, which indicates the important role of the bacterial community at these time points.

Isolation and Characterization of Thermophilic Microorganism Producing Starch-hydrolyze Enzyme (한국 토양으로부터 전분가수분해효소를 생산하는 고온성 균주의 선별과 동정)

  • Choi, Wonseok;Bai, Dong-Hoon
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • A thermophilic microorganism, which is able to hydrolyze starch, was isolated from soil and compost in Korea. It was Gram-positive, rod-shaped, catalase positive, nonmotile, glucose and mannitol fermentative, xylose oxidative, and spore forming microorganism. It also has an ability to hydrolyze casein and gelatin. The color of colony was yellowish white. The sequence of 16S rDNA of strain 2719 showed 99.5% sequence homology with the sequence of 16S rDNA of Bacillus thermoglucosidasius. On the basis of biochemical and physiological properties and phylogenetic analysis, the isolated strain was named as Bacillus thermoglucosidasius 2719.

Random Amplified Polymorphic DNA-PCR Analysis for Identification of Bacillus anthracis (탄저균의 Random Amplified Polymorphic DNA-PCR 분석)

  • 김성주;박경현;김형태;조기승;김기천;최영길;박승환;이남택;채영규
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.56-60
    • /
    • 2001
  • Molecular typing of Bacillus anthracis has been extremely difficult due to the lack of polymorphic DNA markers. Aiming to develop a DNA marker specific for Bacillus anthracis and to be able to discriminate this species from Bacillus genus, we applied the random amplified polymorphic DNA (RAPD)-PCR. We have identified B. anthracis from various Bacillus species. The analysis performed by RAPD clearly demonstrated substantial genetic variations among Bacillus species. This type of analysis is an easy, quick and highly discriminatory technique that may help in diagnosis of anthrax.

  • PDF

Dominant-species Variation of Soil Microbes by Temperate Change (온도변화에 기인한 토양미생물 우점종의 변화에 관한 연구)

  • Park, Kap-Joo;Lee, Byeong-Chol;Lee, Jae-Seok;Park, Chan-Sun;Cho, Myung-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.52-60
    • /
    • 2011
  • Today, the weather is changing continually, due to the progress of global warming. As the weather changes, the habitats of different organisms will change as well. It cannot be predicted whether or not the weather will change with each passing day. In particular, the biological distribution of the areas climate change affects constitutes a major factor in determining the natural state of indigenous plants; additionally, plants are constantly exposed to rhizospheric microorganisms, which are bound to be sensitive to these changes. Interest has grown in the relationship between plants and rhizopheric microorganisms. As a result of this interest we elected to research and experiment further. We researched the dominant changes that occur between plants and rhizospheric organisms due to global warming. First, we used temperature as a variable. We employed four different temperatures and four different sites: room temperature ($27^{\circ}C$), $+2^{\circ}C$, $+4^{\circ}C$, and $+6^{\circ}C$. The four different sites we used were populated by the following species: Pinus deniflora, Pinus koraiensis, Quercus acutissima, and Alnus japonica. We counted colonies of these plants and divided them. Then, using 16S rRNA analysis we identified the microorganisms. In conclusion, we identified the following genera, which were as follows: 10 species of Bacillus, 2 Enterobacter species, 4 Pseudomonas species, 1 Arthrobacter species, 1 Chryseobacterium species, and 1 Rhodococcus species. Among these genera, the dominant species in Pinus deniflora was discovered in the same genus, but a different species dominated at $33^{\circ}C$. Additionally, that of Pinus koraiensis changed in both genus and species which changed into the Chryseobacrterium genus from the Bacilus genus at $33^{\circ}C$.