• Title/Summary/Keyword: BaSO4

Search Result 47, Processing Time 0.02 seconds

Reflectance and Flexural Modulus of ABS/TiO2 Composite Sheets (ABS/TiO2 복합체 쉬트의 반사율과 굴곡 탄성률)

  • Kim, Jun Hong;Yoon, Kwan Han
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.103-107
    • /
    • 2014
  • Poly(acrylonitrile-butadiene-styrene) (ABS) composite sheets containing titanium dioxide ($TiO_2$), barium sulfate ($BaSO_4$), calcium carbonate ($CaCO_3$) were prepared by using a co-rotating twin screw extruder, and the reflectance and flexural modulus of the composite sheets were measured. The fillers were well dispersed in ABS matrix. The reflectance of composite sheet was increased with increasing $TiO_2$ and $BaSO_4$ content. Sheet having $TiO_2$ 20 wt% composition, with 5~20 wt% $BaSO_4$ resulted in more than 95% of reflectance. The flexural modulus of composite sheet was increased from 1864 MPa for $ABS/TiO_2/BaSO_4$ 85/10/5 (w/w/w) to 3134 MPa for $ABS/TiO_2/BaSO_4$ 55/20/25 (w/w/w).

A Study on the Non-Toxic Compound-based Multi-layered Radiation Shielding Sheet and Improvement of Properties (무독성 화합물 기반의 다층 구조 방사선 차폐 시트 개발과 특성 개선에 관한 연구)

  • Heo, Ye Ji;Yang, Seung u;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.149-155
    • /
    • 2020
  • Most of radiation protection clothing is made of lead with excellent radiation shielding because it has excellent process ability and economic efficiency and has a high atomic number. However, lead is classified as a hazardous heavy metal, and there is a risk of lead poisoning. Recently, research to replace lead has been actively conducted. In this study, a research on a shielding sheet with improved physical properties while maintaining the radiation shielding ability equivalent to that of conventional materials by mixing two materials that are harmless to the human body, such as BaSO4 and Bi2O3, and a silicone material binder Was performed. For comparison evaluation with the existing lead shielding sheet, the shielding rate was evaluated using a 40 degree shielding sheet having the highest porosity. As a result, it was analyzed that the shielding rate was superior to 9 % or more at the same thickness. In addition, as a result of studies to improve the physical properties of the shielding sheet, it was analyzed that the shielding sheet mixed with BaSO4/nylon/Bi2O3 was the best.

HNO3 Etching Properties of BaO-B2O3-ZnO-P2O5 System of Barrier Ribs in PDP (플라스마 디스플레이 패널의 격벽용 BaO-B2O3-ZnO-P2O5계의 HNO3를 이용한 에칭 특성)

  • Jeon, J.S.;Kim, J.M.;Kim, N.S.;Kim, H.S.
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.235-240
    • /
    • 2006
  • We investigated the effect of ZnO filler on the microstructure of $BaO-B_2O_3-ZnO-P_2O_5$ glass system to find an etching mechanism of barrier ribs. The sintering behavior of composites heated in the temperature range $560-600^{\circ}C$ was studied by volumetric shrinkage rate and microstructure. The etching test was carried out in $HNO_3$ solution at $50^{\circ}C$ for 10 min. The volumetric shrinkage of sintered sample decreased with the increased firing temperature because of the formation of two crystals. Glass and ZnO filler react forming the $BaZn_2(PO_4)_2$ crystal phases during the sintering process. Etching phenomenon of sintered samples by $HNO_3$ showed that the $BaZn_2(PO_4)_2$ crystal phase was strongly leached compared to glass matrix, crystal phases and fillers. Therefore, the control of interface by condition of sintering is so important to achieve etching effect in barrier ribs.

Radiological analysis of transport and storage container for very low-level liquid radioactive waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Park, Seong Hee;Kim, Youn Jun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4137-4141
    • /
    • 2021
  • As NPPs continue to operate, liquid waste continues to be generated, and containers are needed to store and transport them at low cost and high capacity. To transport and store liquid phase very low-level radioactive waste (VLLW), a container is designed by considering related regulations. The design was constructed based on the existing container design, which easily transports and stores liquid waste. The radiation shielding calculation was performed according to the composition change of barium sulfate (BaSO4) using the Monte Carlo N-Particle (MCNP) code. High-density polyethylene (HDPE) without mixing the additional BaSO4, represented the maximum dose of 1.03 mSv/hr (<2 mSv/hr) and 0.048 mSv/hr (<0.1 mSv/hr) at the surface of the inner container and at 2 m away from the surface, respectively, for a 10 Bq/g of 60Co source. It was confirmed that the dose from the inner container with the VLLW content satisfied the domestic dose standard both on the surface of the container and 2 m from the surface. Although it satisfies the dose standard without adding BaSO4, a shielding material, the inner container was designed with BaSO4 added to increase radiation safety.

Enhanced Superconducting Properties in Melt-processed (Y0.33Sm0.33Nd0.33) Ba2Cu3Oy Oxides in Air

  • Kim, So-Jung;Park, Jong-Kuk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.284-288
    • /
    • 2005
  • We have systematically studied the superconducting properties and flux pinning enhancement of $(Y_{0.33}Sm_{0.33}Nd_{0.33})\;Ba_2Cu_3O_y$ [(YSN)-123] composite oxides by melt growth process in air. A sample prepared by this method showed well-textured microstructure, and $(Y_{0.33}Sm_{0.33}Nd_{0.33})\;BaCuO_5$ [(YSN)211] nonsuperconducting particles were uniformly dispersed in large (YSN) 123 superconducting matrix. The sample showed a sharp superconducting transition at 91 K. The magnetization measurements of the (YSN)-123 sample exhibited the enhanced flux pinning, compared with $YBa_2Cu_3O_y$ (Y-123) sample without Sm and Nd. Critical current densities of (YSN)-123 sample was $2.5{\times}10^4 A/cm^2$ at 2 T and 77 K.

Synthesis of Nano-Size BaTiO3 Powder by Hydrothermal Reaction Method (수열합성법을 이용한 BaTiO3 나노분말 합성)

  • Shim, Young-Jae;Choi, Gyoung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.561-564
    • /
    • 2015
  • Nano-size $BaTiO_3$ powder was synthesized by relatively simple hydrothermal reaction method. Finely dispersed Ti hydroxide precursor was first precipitated using $Ti(SO_4)_2$ and NaOH solution by applying ultrasonic power and washed thoroughly to remove $SO_4{^{2-}}$ and $Na^+$ ion. Then hydrothermal reaction was done at $160^{\circ}C$ for 6 hrs using solution prepared by washed Ti hydroxide precursor slurry and $Ba(OH)_2{\cdot}8H_2O$ with Ti:Ba mole ratio of 1:1. 200 ~ 500 nm size and uniform size distributed $BaTiO_3$ powder was synthesized by relatively low temperature and simple process.

Synthesis of BaTiO3 Thin Film on Ti Electrode by the Current Pulse Waveform (펄스전류파형을 이용한 Ti 전극위에서 BaTiO3박막의 합성)

  • Kang, Jinwook;Tak, Yongsug
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.998-1003
    • /
    • 1998
  • $BaTiO_3$ thin film was electrochemically deposited on Ti electrode in a 0.4 M $Ba(OH)_2$ solution of $85^{\circ}C$ using a current pulse waveform. Both $BaTiO_3$ crystallinity and faradaic efficiency for the film formation were enhanced with the increase of cathodic current density and pulse time. Based on the surface analysis and electrochemical studies, it was suggested that, during cathodic pulsed, the surface pH increase due to the reduction of $H_2O$ accelerates the structural changes of Ti oxides which were formed during anodic cycle. Prior to experiments, Ti oxides were intentionally grown in 0.1 M $H_2SO_4$ solution and the effect of initial oxide film thickness on the $BaTiO_3$ film formation was investigated. The migration of $Ti^{+4}$ ions through the oxide film was retarded with the increase of film thickness and it was observed that the crystallization of $BaTiO_3$ was only limited to the defect area of surface oxides.

  • PDF

Novel Method for the Preparation of Mesoporous BaSO4 Material with Thermal Stability by Spray Pyrolysis

  • Nagaraja, Bhari Mallanna;Abimanyu, Haznan;Jung, Kwang-Deog;Yoo, Kye-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.1007-1012
    • /
    • 2008
  • Spray pyrolysis has been found as an excellent method for the preparation of mesoporous barium sulfate at higher temperature. Ethylene glycol, a reducing agent, and solvents had good inhibition effect for the preparation of $BaSO_4$ nano particles. The $BaSO_4$ solution was sprayed at 500 & 800 ${^{\circ}C}$ using different solvents such as methanol, ethanol, propanol and n-butyl alcohol. $N_2$ adsorption-desorption isotherm revealed that $BaSO_4$ is micropore free, possessing narrow mesopores size distribution and high BET surface areas of 72.52 $m^2\;g^{-1}$ at 800 ${^{\circ}C}$ using propanol as an additive. Scanning electron microscopy (SEM) indicates that the morphology of $BaSO_4$ nano material shows uniform shell like particles. Transmission electron microscopy (TEM) proved that the resulting BaSO4 nano particles were uniform in size and the average particle size was 4-8 nm. The surface functionality and ethylene glycol peaks were assessed by Fourier transform infrared resonance (FTIR) spectroscopy. Low intensity ethylene glycol specific absorption peak was observed in propanol which proved that propanol had good inhibition effect on the structural morphology of nano particles.

Growth and Optical Conductivity Properties for BaAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaAl2Se4 단결정 박막 성장과 광전도 특성)

  • Jeong, Junwoo;Lee, Kijung;Hong, Kwangjoon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.404-411
    • /
    • 2015
  • A stoichiometric mixture of evaporating materials for $BaAl_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaAl_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaAl_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.29{\times}10^{-16}cm^{-3}$ and $278cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaAl_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.4205eV-(4.3112{\times}10^{-4}eV/K)T^2/(T+232 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaAl_2Se_4$ have been estimated to be 249.4 meV and 263.4 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n =1 and $C_{31}$-exciton peaks for n=31.