• Title/Summary/Keyword: BTB domain

Search Result 8, Processing Time 0.023 seconds

Zinc finger and BTB domain-containing protein 3 is essential for the growth of cancer cells

  • Lim, Ji-Hong
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.405-410
    • /
    • 2014
  • ZBTB3 belongs to the Zinc finger and BTB/POZ domain containing transcription factor family; however, its biological role has rarely been studied. We demonstrate for the first time, to our knowledge, that ZBTB3 is an essential factor for cancer cell growth via the regulation of the ROS detoxification pathway. Suppression of ZBTB3 using two different short hairpin RNAs in human melanoma, lung carcinoma, and breast carcinoma results in diminished cell growth. In addition, we found that suppression of ZBTB3 activates a caspase cascade, including caspase-9, -3, and PARP leading to cellular apoptosis, resulting from failed ROS detoxification. We identified that ZBTB3 plays an important role in the gene expression of ROS detoxification enzymes. Our results reveal that ZBTB3 may play a critical role in cancer cell growth via the ROS detoxification system. Therefore, therapeutic strategies that target ZBTB3 could be used in selective cancer treatments.

A Novel Human BTB-kelch Protein KLHL31, Strongly Expressed in Muscle and Heart, Inhibits Transcriptional Activities of TRE and SRE

  • Yu, Weishi;Li, Yongqing;Zhou, Xijin;Deng, Yun;Wang, Zequn;Yuan, Wuzhou;Li, Dali;Zhu, Chuanbing;Zhao, Xueying;Mo, Xiaoyang;Huang, Wen;Luo, Na;Yan, Yan;Ocorr, Karen;Bodmer, Rolf;Wang, Yuequn;Wu, Xiushan
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.443-453
    • /
    • 2008
  • The Bric-a-brac, Tramtrack, Broad-complex (BTB) domain is a protein-protein interaction domain that is found in many zinc finger transcription factors. BTB containing proteins play important roles in a variety of cellular functions including regulation of transcription, regulation of the cytoskeleton, protein ubiquitination, angiogenesis, and apoptosis. Here, we report the cloning and characterization of a novel human gene, KLHL31, from a human embryonic heart cDNA library. The cDNA of KLHL31 is 5743 bp long, encoding a protein product of 634 amino acids containing a BTB domain. The protein is highly conserved across different species. Western blot analysis indicates that the KLHL31 protein is abundantly expressed in both embryonic skeletal and heart tissue. In COS-7 cells, KLHL31 proteins are localized to both the nucleus and the cytoplasm. In primary cultures of nascent mouse cardiomyocytes, the majority of endogenous KLHL31 proteins are localized to the cytoplasm. KLHL31 acts as a transcription repressor when fused to GAL4 DNA-binding domain and deletion analysis indicates that the BTB domain is the main region responsible for this repression. Overexpression of KLHL31 in COS-7 cells inhibits the transcriptional activities of both the TPA-response element (TRE) and serum response element (SRE). KLHL31 also significantly reduces JNK activation leading to decreased phosphorylation and protein levels of the JNK target c-Jun in both COS-7 and Hela cells. These results suggest that KLHL31 protein may act as a new transcriptional repressor in MAPK/JNK signaling pathway to regulate cellular functions.

KBTBD7, a novel human BTB-kelch protein, activates transcriptional activities of SRE and AP-1

  • Hu, Junjian;Yuan, Wuzhou;Tang, Ming;Wang, Yuequn;Fan, Xiongwei;Mo, Xiaoyang;Li, Yongqing;Ying, Zaochu;Wan, Yongqi;Ocorr, Karen;Bodmer, Rolf;Deng, Yun;Wu, Xiushan
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • In this study, a novel member of BTB-kelch proteins, named KBTBD7, was cloned from a human embryonic heart cDNA library. The cDNA of KBTBD7 is 3,008 bp long and encodes a protein product of 684 amino acids (77.2 kD). This protein is highly conserved in evolution across different species. Western blot analysis indicates that a 77 kD protein specific for KBTBD7 is wildly expressed in all embryonic tissues examined. In COS-7 cells, KBTBD7 proteins are localized to the cytoplasm. KBTBD7 is a transcription activator when fused to GAL4 DNA-binding domain. Deletion analysis indicates that the BTB domain and kelch repeat motif are main regions for transcriptional activation. Overexpression of KBTBD7 in MCF-7 cells activates the transcriptional activities of activator protein-1 (AP-1) and serum response element (SRE), which can be relieved by siRNA. These results suggest that KBTBD7 proteins may act as a new transcriptional activator in mitogen-activated protein kinase (MAPK) signaling.

Expression characterization and transcription regulation analysis of porcine Yip1 domain family member 3 gene

  • Ni, Dongjiao;Huang, Xiang;Wang, Zhibo;Deng, Lin;Zeng, Li;Zhang, Yiwei;Lu, Dongdong;Zou, Xinhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.398-407
    • /
    • 2020
  • Objective: The Yip1 domain family (YIPF) proteins were proposed to function in endoplasmic reticulum (ER) to Golgi transport and maintenance of the morphology of the Golgi, which were homologues of yeast Yip1p and Yif1p. YIPF3, the member 3 of YIPF family was a homolog of Yif1p. The aim of present study was to investigate the expression and regulation mechanism of porcine YIPF3. Methods: Quantitative realtime polymerase chain reaction (qPCR) was used to analyze porcine YIPF3 mRNA expression pattern in different tissues and pig kidney epithelial (PK15) cells stimulated by polyinosine-polycytidylic acid (poly [I:C]). Site-directed mutations combined with dual luciferase reporter assays and electrophoretic mobility shift assay (EMSA) were employed to reveal transcription regulation mechanism of porcine YIPF3. Results: Results showed that the mRNA of porcine YIPF3 (pYIPF3) was widely expressed with the highest levels in lymph and lung followed by spleen and liver, while weak in heart and skeletal muscle. Subcellular localization results indicated that it expressed in Golgi apparatus and plasma membranes. Upon stimulation with poly (I:C), the level of this gene was dramatically up-regulated in a time- and concentration-dependent manner. pYIPF3 core promoter region harbored three cis-acting elements which were bound by ETS proto-oncogene 2 (ETS2), zinc finger and BTB domain containing 4 (ZBTB4), and zinc finger and BTB domain containing 14 (ZBTB14), respectively. In which, ETS2 and ZBTB4 both promoted pYIPF3 transcription activity while ZBTB14 inhibited it, and these three transcription factors all played important regulation roles in tumorigenesis and apoptosis. Conclusion: The pYIPF3 mRNA expression was regulated by ETS2, ZBTB4, and ZBTB14, and its higher expression in immune organs might contribute to enhancing ER to Golgi transport of proteins, thus adapting to the immune response.

Novel Genetic Variants Associated with Lumbar Spondylosis in Koreans : A Genome-Wide Association Study

  • Kim, Hyun Ah;Heo, Seong Gu;Park, Ji Wan;Jung, Young Ok
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.1
    • /
    • pp.66-74
    • /
    • 2018
  • Objective : The aim of this study was to identify the susceptibility genes responsible for lumbar spondylosis (LS) in Korean patients. Methods : Data from 1427 subjects were made available for radiographic grading and genome wide association studies (GWAS) analysis. Lateral lumbar spine radiographs were obtained and the various degrees of degenerative change were semi-quantitatively scored. A pilot GWAS was performed using the AffymetrixGenome-Wide Human single-nucleotide polymorphisms (SNPs), 500K array. A total of 352228 SNPs were analyzed and the association between the SNPs and case-control status was analyzed by stepwise logistic regression analyses. Results : The top 100 SNPs with a cutoff p-value of less than $3.7{\times}10^{-4}$ were selected for joint space narrowing, while a cutoff p-value of $6.0{\times}10^{-4}$ was applied to osteophytes and the Kellgren-Lawrence (K-L) osteoarthritis grade. The SNPs with the strongest effect on disc space narrowing, osteophytes, and K-L grade were serine incorporator 1 (rs155467, odds ratio [OR]=17.58, $p=1.6{\times}10^{-4}$), stromal interaction molecule 2 (STIM1, rs210781, OR=5.53, $p=5{\times}10^{-4}$), and transient receptor potential cation channel, subfamily C (rs11224760, OR=3.99, $p=4.8{\times}10^{-4}$), respectively. Leucine-rich repeat-containing G protein-coupled receptor 4 was significantly associated with both disc space narrowing and osteophytes (rs1979400, OR=2.01, $p=1.1{\times}10^{-4}$ for disc space narrowing, OR=1.79, $p=3{\times}10^{-4}$ for osteophytes), while zinc finger and BTB domain containing 7C was significantly and negatively associated with both osteophytes and a K-L grade >2 (rs12457004,OR=0.25, $p=5.8{\times}10^{-4}$ and OR=0.27, $p=5.3{\times}10^{-4}$, respectively). Conclusion : We identified SNPs that potentially contribute to the pathogenesis of LS. This is the first report of a GWAS in an Asian population.

Effects of Recombinant Human Erythropoietin Treatment in Male Cynomolgus (Macaca fascicularis) Monkeys (II): Gene Expression Profiling in Spleen (게잡이 원숭이에서 Recombinant Human Erythropoietin의 4주간 투여 후 비장 유전자 발현 연구)

  • Yoon, Seok-Joo;Hwang, Ji-Yoon;Lim, Jung-Sun;Jeong, Sun-Young;Kim, Yong-Bum;Kim, Dal-Hyun;Kwon, Myung-Sang;Han, Sang-Seop;Kim, Choong-Yong
    • Toxicological Research
    • /
    • v.21 no.3
    • /
    • pp.209-218
    • /
    • 2005
  • We investigated effects of recombinant human erythropoietin (rHuEPO) on profiles of mRNA transcripts in 6 male cynomolgus (M. fascicularis) monkey's spleen for 4 weeks. Six monkeys, composed of control and treatment group (Control : M1, M2, M3: Treatment : M4, M5, M6) were intravenously administered 3 times per week without or with a dose of rHuEPO 2730 IU/0.1 ml/kg. After 4 weeks rHuEPO treatment, spleen was removed for RNA isolation. Splenic gene expression was assessed using Affymetrix U133A 2.0 arrays containing 18,400 transcripts and variants, including 14,500 well-characterized human genes. Gene expression pattern was very different between individuals even in same treatment. In rHuEPO treated groups showed number of genes were up- or down-regulated (M4: 79: M5: 48; M6: 73 genes). Six genes (epidermal growth factor receptor, calgranulin A, estrogen receptor binding site associated antigen, matrix metalloproteinase 19, zinc finger and BTB domain containing 16, progestin and adipoQ receptor) were commonly expressed in rHuEPO treated group. The different individual response could be major considering factor in monkey experiment. Further study is needed to clarify the different individual response to rHuEPO in molecular level. This study will be valuable in the fundamental understanding and validation of molecular toxicology for bio-generic drugs including rHuEPO in cynomolgus monkey.

Alternative splicing variant of NRP/B promotes tumorigenesis of gastric cancer

  • Kim, Aram;Mok, Bo Ram;Hahn, Soojung;Yoo, Jongman;Kim, Dong Hyun;Kim, Tae-Aug
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.348-353
    • /
    • 2022
  • Gastrointestinal cancer is associated with a high mortality rate. Here, we report that the splice variant of NRP/B contributes to tumorigenic activity in highly malignant gastric cancer through dissociation from the tumor repressor, HDAC5. NRP/B mRNA expression is significantly higher in the human gastric cancer tissues than in the normal tissues. Further, high levels of both the NRP/B splice variant and Lgr5, but not the full-length protein, are found in highly tumorigenic gastric tumor cells, but not in non-tumorigenic cells. The loss of NRP/B markedly inhibits cell migration and invasion, which reduces tumor formation in vivo. Importantly, the inhibition of alternative splicing increases the levels of NRP/B-1 mRNA and protein in AGS cells. The ectopic expression of full-length NRP/B exhibits tumor-suppressive activity, whereas NRP/B-2 induces the noninvasive human gastric cancer cells tumorigenesis. The splice variant NRP/B-2 which loses the capacity to interact with tumor repressors promoted oncogenic activity, suggesting that the BTB/POZ domain in the N-terminus has a crucial role in the suppression of gastric cancer. Therefore, the regulation of alternative splicing of the NRP/B gene is a potential novel target for the treatment of gastrointestinal cancer.

Genome wide association study on feed conversion ratio using imputed sequence data in chickens

  • Wang, Jiaying;Yuan, Xiaolong;Ye, Shaopan;Huang, Shuwen;He, Yingting;Zhang, Hao;Li, Jiaqi;Zhang, Xiquan;Zhang, Zhe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.494-500
    • /
    • 2019
  • Objective: Feed consumption contributes a large percentage for total production costs in the poultry industry. Detecting genes associated with feeding traits will be of benefit to improve our understanding of the molecular determinants for feed efficiency. The objective of this study was to identify candidate genes associated with feed conversion ratio (FCR) via genomewide association study (GWAS) using sequence data imputed from single nucleotide polymorphism (SNP) panel in a Chinese indigenous chicken population. Methods: A total of 435 Chinese indigenous chickens were phenotyped for FCR and were genotyped using a 600K SNP genotyping array. Twenty-four birds were selected for sequencing, and the 600K SNP panel data were imputed to whole sequence data with the 24 birds as the reference. The GWAS were performed with GEMMA software. Results: After quality control, 8,626,020 SNPs were used for sequence based GWAS, in which ten significant genomic regions were detected to be associated with FCR. Ten candidate genes, ubiquitin specific peptidase 44, leukotriene A4 hydrolase, ETS transcription factor, R-spondin 2, inhibitor of apoptosis protein 3, sosondowah ankyrin repeat domain family member D, calmodulin regulated spectrin associated protein family member 2, zinc finger and BTB domain containing 41, potassium sodium-activated channel subfamily T member 2, and member of RAS oncogene family were annotated. Several of them were within or near the reported FCR quantitative trait loci, and others were newly reported. Conclusion: Results from this study provide valuable prior information on chicken genomic breeding programs, and potentially improve our understanding of the molecular mechanism for feeding traits.