• 제목/요약/키워드: BSCCO 2212

검색결과 86건 처리시간 0.022초

원심 용융 성형법을 이용한 BSCCO 튜브 제조 (Fabrication of BSCCO Tube by Centrifugal Melting Process)

  • 김기익;최정숙;오성룡;전병혁;김혜림;현옥배;김형섭;김찬중
    • Progress in Superconductivity
    • /
    • 제7권1호
    • /
    • pp.97-101
    • /
    • 2005
  • Bi-22l2 tubes for fault current limiter (FCL) were fabricated by centrifugal melting process. $SrSO_4$ ($10\;wt.\;\%$) was added to Bi-2212 powder to lower the melting point of Bi-22l2 and to improve the mechanical properties. The BSCCO powder was completely melted at $1300\;^{\circ}C$ using the RF furnace and then poured into rotating steel mold. The steel mold, preheated at $450\;{\circ}C{\sim}550^{\circ}C$ for 2 hour was rotated at $1020{\sim}2520\;RPM$. The solidified BSCCO tube was cooled down to room temperature in the furnace for 48 hours and separated from the mold between Bi-2212 and the mold. $ZrO_2$ solution was used to separate it easily from the mold and Ag tape was attached in the mold inner wall of the mold to analysis electrical property. Bi-22l2 tube was often cracked when the cooling rate was high. BSCCO tubes with $70{\Phi}{\times}100\;mm,\;50{\Phi}{\times}100\;mm$ and $30{\Phi}{\times}150\;mm$ size were fabricated by centrifugal melting process. The $J_{c}s$ of tubes with $50{\Phi}{\times}100\;mm{\times}4.0\;t$ and $50{\Phi}{\times}100\;mm{\times}4.l\;t$ were 178 and $74.2\;A/cm^2$ at 77K, respectively. The processing condition for Bi-2212 tube fabrication was investigated using XRD and SEM analyses.

  • PDF

MOD 방법을 이용한 Bi2Sr2CaCu2O8+d 박막제작 (Bi2Sr2CaCu2O8+d Thin Films Grown on (100) MgO Substrate by Metallorganic Decomposition Method)

  • 김선미;박미화;이기진;차덕준
    • 한국전기전자재료학회논문지
    • /
    • 제16권11호
    • /
    • pp.1035-1040
    • /
    • 2003
  • High $T_{c}$ superconducting B $i_2$S $r_2$CaC $u_2$ $O_{8+d}$ (BSCCO2212) films were prepared by a metallorganic decomposition (MOD) method. The metal organic solution of BSCCO2212 was spin-coated on MgO (100) substrates at 3000 rpm for 1 min. To achieve a high critical current density, we controlled heat-treatment conditions and atmosphere. The films were annealed at temperature 75$0^{\circ}C$ ∼ 80$0^{\circ}C$ in $O_2$ or air. We obtained c-axis orientated BSCCO thin films on MgO substrates. The annealed sample at 77$0^{\circ}C$ with $O_2$ showed the critical temperature about 77 K and critical current denstity of 1.19 ${\times}$ 10$^{5}$ A/$\textrm{cm}^2$ about 13 K.

의용소자로 응용하기 위해 제작한 BSCCO 박막의 부착계수 해석 (Analysis of Sticking Coefficient in BSCCO Thin Film Fabricatied for apply to Biomedical device)

  • 양승호;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.351-352
    • /
    • 2006
  • BSCCO thin films are fabricated by an ion beam sputtering method, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element in BSCCO film formation was observed to show a unique temperature dependence; it was almost a constant value of 0.49 below about $730^{\circ}C$ and decreased linearly over about $730^{\circ}C$. In contrast, Sr and Ca, displayed no such remarkable temperature dependence. This behavior of the sticking coefficient was explained consistently on the basis of the evaporation and sublimation processes of $Bi_2O_3$. It was concluded that Bi(2212) thin film constructs from the partial melted Bi(2201) phase with the aid of the liquid phase of $Bi_2O_3$.

  • PDF

스퍼터링 법에 의한 BSCCO 단결정 성장의 부착 계수 향상 (Enhanced sticking coefficient in the BSCCO single crystal grown by the sputtering method)

  • 천민우;양승호;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.585-586
    • /
    • 2005
  • BSCCO thin films were fabricated by an ion beam sputtering method with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element in BSCCO film formation was observed to show a unique temperature dependence; it was almost a constant value of 0.49 below about $730^{\circ}C$ and decreased linearly over about $730^{\circ}C$. In contrast, Sr and Ca, displayed no such remarkable temperature dependence. This behavior of the sticking coefficient was explained consistently on the basis of the evaporation and sublimation processes of Bi2O3. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

Sl Transitions in BSCCO Mixed Crystal Thin Films

  • Ahn, Joon-Ho;Yi, Keon-Young;Park, Yong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권2호
    • /
    • pp.20-23
    • /
    • 2002
  • Temperature (T) dependence of the sheet resistance (R$\_$$\square$/) has been investigated an the c-axis oriented thin films of the (Bi2212/Bi2201) mixed crystal with different molar fractions. The R$\_$$\square$/-T superconducting characteristic deteriorated with reduction of the Bi2212 fraction, and almost disappears at 48 mol% where a superconductor-to-insulator transition too k place, with the resistance on the normal state, R$\_$N/, reaching 4.1 kΩka at 80 K. This R$\_$$\square$/ value is close to the universal quantum number, h/(2e)$_2$≡ 6.5 kΩ predicted by the Kosterlitz-Thouless (KT) transition theory. The R$\_$$\square$/-T characteristics of the 48 mol% thin film can be elucidated as a competitive process of KT transition brought about by charge or vortex in the two-dimensional layer structure.

Characteristics of Sticking Coefficient in BSCCO Thin Film

  • 조춘남;안준호;오재한;최운식;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 제2회 학술대회 논문집 일렉트렛트 및 응용기술전문연구회
    • /
    • pp.59-63
    • /
    • 2000
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$ This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_2O_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF