Fabrication and Characterizations of the BSCCO-2212/SrSO₄ Bulk Superconductors Kyu Tae Kim^a, Seok Hern Jang^a, Jun Hyung Lim^a, Kyung Min Yoon^a, Seung Yi Lee^a, Jinho Joo^{*,a}, Gye-Won Hong^b, Chan-Joong Kim^c, Hye-Lim Kim^d, Ok-Bae Hyun^d a School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746, Korea b The Department of Electronic Engineering, Korea Polytechnic University, Siheung, GyungGi-Do 429-793, Korea c Nuclear Material Development Team, Korea Atomic Energy Research Institute, Daejeon 305-353, Korea d Power System Laboratory, Korea Electric Power Research Institute, Daejeon 305-380, Korea We fabricated BSCCO-2212 (2212) bulk superconductor and evaluated the effects of annealing temperature (790 - 845 °C) and atmosphere (oxygen and nitrogen) on critical current (I_c) and critical temperature (T_c). It was observed that the I_c of 2212 was significantly dependent on the annealing temperature and reached peak value (378 A at 77 K) at 800 °C. On the other hand, T_c was almost independent of the annealing temperature but dependent on the atmosphere; the T_c was measured to be 89 K after annealing at oxygen atmosphere and it increased to 92 K after additional annealing at nitrogen atmosphere. This improved T_c is considered to be related to the optimized oxygen content of the 2212. It is to be noted that, on the contrary, the additional annealing remarkably degraded the I_c . The possible causes of the variations of the I_c and I_c with the annealing condition will be presented based on the XRD, EPMA, and TEM observations. Keywords: BSCCO-2212, melt casting process, microstructure, strontium sulfates, texture ## Acknowledgement This research was supported by Electric Power Industry R&D program funded by the Ministry of Commerce, Industry, and Energy, Republic of Korea