• Title/Summary/Keyword: BS 노드

Search Result 51, Processing Time 0.032 seconds

Study of Location-based Routing Techniques of BS and Sensor Node (BS와 센서 노드의 위치 기반 라우팅 기법에 관한 연구)

  • Kim, Yong-Tae;Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.289-295
    • /
    • 2012
  • Routing technique of wireless sensor network that is presented to improve effectiveness of consumption in energy at the previous study is existing in various ways, however for routing, its own location data and nodes' location data close to with 1-hop distance should be kept. And it uses multi-hop transmission method that transmits data to BS node via several nodes. This technique makes electronic consumption of sensor node and entire network's energy consumption so that it makes effective energy management problem. Therefore, this paper suggests location based 1-hop routing technique of BS node that satisfies distance $d{\pm}{\alpha}$ with source node using RSSI and radio wave range of sensor node.

LECEEP : LEACH based Chaining Energy Efficient Protocol (에너지 효율적인 LEACH 기반 체이닝 프로토콜 연구)

  • Yoo, Wan-Ki;Kwon, Tae-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.801-808
    • /
    • 2010
  • LEACH, one of hierarchical based routing protocols, was proposed for energy efficiency which is the most important requirement of Wireless Sensor Network(WSN). LEACH protocol is composed of a cluster of certain large number of clusters, which have a cluster head and member nodes. Member nodes send sensing data to their cluster heads, and the cluster heads aggregate the sensing data and transmit it to BS. The challenges of LEACH protocol are that cluster heads are not evenly distributed, and energy consumption to transmit aggregated data from Cluster heads directly to BS is excessive. This study, to improve LEACH protocol, suggests LECEEP that transmit data to contiguity cluster head that is the nearest and not far away BS forming chain between cluster head, and then the nearest cluster head from BS transmit aggregated data finally to BS. According to simulation, LECEEP consumes less energy and retains more number of survival node than LEACH protocol.

A Cluster-Header Selecting Method for more Secure and Energy-Efficient in Wireless Sensor Network (무선 센서 네트워크에서 안전하고 에너지 효율적인 클러스터 헤더 선출 기법)

  • Kim, Jin-Mook;Lee, Pung-Ho;Ryou, Hwang-Bin
    • Convergence Security Journal
    • /
    • v.7 no.2
    • /
    • pp.107-118
    • /
    • 2007
  • Distributed wireless sensor network in various environment have characteristic that is surveillance of environment-element and offering usefully military information but there is shortcoming that have some secure risks. Therefore secure service must be required for this sensor network safety. More safe and effective techniques of node administration are required for safe communication between each node. This paper proposes effective cluster-header and clustering techniques in suitable administration techniques of group-key on sensor network. In this paper, first each node transmit residual electric power and authentication message to BS (Base-Station). BS reflects "Validity Authentication Rate" and residual electric power. And it selects node that is more than these regularity values by cluster header. After BS broadcasts information about cluster header in safety and it transmits making a list of information about cluster member node to cluster header. Also, Every rounds it reflects and accumulates "Validity Authentication Rate" of former round. Finally, BS can select more secure cluster header.

  • PDF

A Study on Implementation of Authentication System for Home Networking Service (홈 네트워크 서비스를 위한 인증시스템 구현에 관한 연구)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1091-1098
    • /
    • 2009
  • In this paper, we designed the authentication system for home network service and applied it to actual sensor nodes. The pair-wise pre-distribution key skim is applied for prevention of authentication key from sniffing on the wireless sensor networks. The authentication key and data are encrypted by using the CBC mode RC5 algorithm based on the SPINS. The experimental environment consists of a base station (BS)and sensor nodes and each sensor node sends both sensing data and the encrypted authentication key to the BS. For simulations we set up some what-if scenarios of security menaces in home network service.Slightly modified the TOS_Msg data arrays of TinyOS is suggested to store 8-byte authentication key which can enable data encryption and authentication at the each sensor node. As a result, malfunction caused by communication between BS and nodes of other groups of added nodes having malicious purpose can be protected. Also, we confirmed that a critical data of home networking service like vital signal can be transmitted securely through this system by encryption technique.

An IDE based Hierarchical Node Authentication Protocol for Secure Data Transmission in WSN Environment (WSN 환경에서 안전한 데이터 전달을 위한 IDE 기반의 계층적 노드인증 프로토콜)

  • Cho, Young-Bok;Lee, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3B
    • /
    • pp.149-157
    • /
    • 2012
  • In WSN environment, the sensor nodes collect sensed data, and transmit data to the BS. BS is difficult to trust the data from unauthenticated nodes. Therefore, many papers have been proposed about the node authentication and the safety of data. In the AM-E paper, data is delivered after node authentication. In this time, the sensor nodes are directly communicated to BS the AREQ/AREP message for authentication. Therefore, the sensor nodes consume more energy for authentication. Also, noes communicate directly with the BS for authentication will have problem due to the limited energy of nodes. In this paper, the same security with AM-E is supported, Furthermore, to minimize the energy consumption, IDE based hierarchical node authentication protocol is proposed. Compared with AM-E, the number of alive nodes is increased about 39%. Thus, the entire network life time is extended and energy efficiency is improved.

Clustering Triangular Routing Protocol in Wireless Sensor Network (무선 센서 네트워크에서 삼각 클러스터링 라우팅 기법)

  • Nurhayati, Nurhayati;Lee, Kyung Oh;Choi, Sung Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.913-916
    • /
    • 2010
  • Wireless sensor networks consist of small battery powered devices with limited energy resources. Once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, energy efficiency is a key design issue that needs to be enhanced in order to improve the life span of the network. In BCDCP, all sensors send data from CH (Cluster Head) and then to BS (Base Station). BCDCP works well in small-scale network but in large scale network it is not appropriated since it uses much energy for long distance wireless communication. We propose a routing protocol - Triangular Clustering Routing Protocol (TCRP) - to prolong network life time through the balanced energy consumption. TCRP selects cluster head of triangular shape. The sensor field is divided into energy level and in every level we choose one node as a gate node. This gate node collects data and sends it to the leader node. Finally the leader node sends the aggregated data to the BS. We show TCRP outperforms BCDCP with several experiments.

A Hybrid MAC Protocol for Wireless Sensor Networks Enhancing Network Performance (무선센서 네트워크에서 네트워크 성능을 향상시키는 하이브리드 MAC 프로토콜)

  • Kim, Seong-Cheol;Kim, Dong-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • In this paper we suggest a hybrid MAC protocol for wireless sensor networks (WSN) to enhance network performance. The proposed MAC scheme is specifically designed for wireless sensor networks which consist of lots nodes. The contributions of this paper are: First, the proposed scheduling algorithm is independent of network topology. Even though the BS node has lots of one hop node in dense mode network, all the time slots can be assigned fully without increasing frequencies. Second, BS one hop nodes can use more than one time slots if necessary, so total network performance is increased. We compare the network performance of the proposed scheme with previous one, HyMAC [1].

  • PDF

Operating μTESLA based on Variable Key-Slot in Multi-Hop Unattended WSN (멀티 홉 Unattended WSN에서 가변 키 슬롯 기반 μTESLA의 운영)

  • Choi, JinChun;Kang, Jeonil;Nyang, DaeHun;Lee, KyungHee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.223-233
    • /
    • 2014
  • As a broadcast message authentication method in wireless sensor networks, ${\mu}$TESLA enables sensor nodes efficiently authenticate message from base station (BS). However, if we use ${\mu}$TESLA that has very short length of key slot in unattended wireless sensor network (UWSN), sensors may calculate a huge amount of hashs at once in order to verify the revealed secret key. In contrast, if we set the length of ${\mu}$TESLA's key slot too long in order to reduce the amount of hashs to calculate, BS should wait out the long slot time to release key. In this paper, we suggest variable key slot ${\mu}$TESLA in order to mitigate the problem. As showing experiment results, we prove that our suggestion improve sensor node's response time and decrease of number of hash function calculation.

Pre-cluster HEAD Selection Scheme based on Node Distance in Chain-Based Protocol (체인기반 프로토콜에서 노드의 거리에 따른 예비 헤드노드 선출 방법)

  • Kim, Hyun-Duk;Choi, Won-Ik
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1273-1287
    • /
    • 2009
  • PEGASIS, a chain-based protocol, forms chains from sensor nodes so that each node transmits and receives from a neighbor. In this way, only one node (known as a HEAD) is selected from that chain to transmit to the sink. Although PEGASIS is able to balance the workload among all of the nodes by selecting the HEAD node in turn, a considerable amount of energy may be wasted when nodes which are far away from sink node act as the HEAD. In this study, DERP (Distance-based Energy-efficient Routing Protocol) is proposed to address this problem. DERP is a chain-based protocol that improves the greedy-algorithm in PEGASIS by taking into account the distance from the HEAD to the sink node. The main idea of DERP is to adopt a pre-HEAD (P-HD) to distribute the energy load evenly among sensor nodes. In addition, to scale DERP to a large network, it can be extended to a multi-hop clustering protocol by selecting a "relay node" according to the distance between the P-HD and SINK. Analysis and simulation studies of DERP show that it consumes up to 80% less energy, and has less of a transmission delay compared to PEGASIS.

  • PDF

Research on An Energy Efficient Triangular Shape Routing Protocol based on Clusters (클러스터에 기반한 에너지 효율적 삼각모양 라우팅 프로토콜에 관한 연구)

  • Nurhayati, Nurhayati;Lee, Kyung-Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.115-122
    • /
    • 2011
  • In this paper, we propose an efficient dynamic workload balancing strategy which improves the performance of high-performance computing system. The key idea of this dynamic workload balancing strategy is to minimize execution time of each job and to maximize the system throughput by effectively using system resource such as CPU, memory. Also, this strategy dynamically allocates job by considering demanded memory size of executing job and workload status of each node. If an overload node occurs due to allocated job, the proposed scheme migrates job, executing in overload nodes, to another free nodes and reduces the waiting time and execution time of job by balancing workload of each node. Through simulation, we show that the proposed dynamic workload balancing strategy based on CPU, memory improves the performance of high-performance computing system compared to previous strategies.