• Title/Summary/Keyword: BPNN

Search Result 86, Processing Time 0.025 seconds

The Performance Comparison of Classifier Algorithm for Pattern Recognition of Welding Flaws (용접결함의 패턴인식을 위한 분류기 알고리즘의 성능 비교)

  • Yoon, Sung-Un;Kim, Chang-Hyun;Kim, Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.39-44
    • /
    • 2006
  • In this study, we nodestructive test based on ultrasonic test as inspection method and compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as pattern recognition algorithm of welding flasw. For this purpose, variables are applied the same to two algorithms. Where, feature variables are zooming flaw signals of reflected whole signals from welding flaws in time domain. Through this process, we confirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.

Determining the Position of a Mobile Robot Using a Vanishing Point Neural Networks (소실점과 신경회로망을 이용한 이동 로봇의 위치 결정)

  • 이효진;이기성
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.165-170
    • /
    • 1997
  • During the navigation of mobile robot, one of the essential task if to determine the absolute position of mobile robot. In this paper, a method to determine the position of the camera using a vanishing point and neural networks without landmark if proposed. In determining the position of the camera on the world coordinate, there are differences between the real value and the calculated value because of uncertainty in pixels, incorrect camera calibration and lens distortion etc. This paper describes the solution of the above problem using BPNN(Back Propagation Neural Network) and experimental results show the capability to adapt for a mobile robot.

  • PDF

NEURAL NETWORK DYNAMIC IDENTIFICATION OF A FERMENTATION PROCESS

  • Syu, Mei-J.;Tsao, G.T.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1021-1024
    • /
    • 1993
  • System identification is a major component for a control system. In biosystems, which is nonlinear and dynamic, precise identification would be very helpful for implementing a control system. It is difficult to precisely identify such non-linear systems. The measurable data on products from 2,3-butanediol fermentation could not be included in a process model based on kinetic approach. Meanwhile, a predictive capability is required in developing a control system. A neural network (NN) dynamic identifier with a by/(1+ t ) transfer function was therefore designed being able to predict this fermentation. This modified inverse NN identifier differs from traditional models in which it is not only able to see but also able to predict the system. A moving window, with a dimension of 11 and a fixed data size of seven, was properly designed. One-step ahead identification/prediction by an 11-3-1 BPNN is demonstrated. Even under process fault, this neural network is still able to perform several-step ahead prediction.

  • PDF

A Study on the EMG Pattern Recognition Using SOM-TVC Method Robust to System Noise (시스템잡음에 강건한 SOM-TVC 기법을 이용한 근전도 패턴 인식에 관한 연구)

  • Kim In-Soo;Lee Jin;Kim Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.417-422
    • /
    • 2005
  • This paper presents an EMG pattern classification method to identify motion commands for the control of the artificial arm by SOM-TVC(self organizing map - tracking Voronoi cell) based on neural network with a feature parameter. The eigenvalue is extracted as a feature parameter from the EMG signals and Voronoi cells is used to define each pattern boundary in the pattern recognition space. And a TVC algorithm is designed to track the movement of the Voronoi cell varying as the condition of additive noise. Results are presented to support the efficiency of the proposed SOM-TVC algorithm for EMG pattern recognition and compared with the conventional EDM and BPNN methods.

Shear lag prediction in symmetrical laminated composite box beams using artificial neural network

  • Chandak, Rajeev;Upadhyay, Akhil;Bhargava, Pradeep
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.77-89
    • /
    • 2008
  • Presence of high degree of orthotropy enhances shear lag phenomenon in laminated composite box-beams and it persists till failure. In this paper three key parameters governing shear lag behavior of laminated composite box beams are identified and defined by simple expressions. Uniqueness of the identified key parameters is proved with the help of finite element method (FEM) based studies. In addition to this, for the sake of generalization of prediction of shear lag effect in symmetrical laminated composite box beams a feed forward back propagation neural network (BPNN) model is developed. The network is trained and tested using the data base generated by extensive FEM studies carried out for various b/D, b/tF, tF/tW and laminate configurations. An optimum network architecture has been established which can effectively learn the pattern. Computational efficiency of the developed ANN makes it suitable for use in optimum design of laminated composite box-beams.

Neuron gradient control by random generator and application to modeling a plasma etch process data (난수발생기를 이용한 뉴런경사 제어와 플라즈마 식각공정 데이터 모델링에의 응용)

  • Kim, Sung-Mo;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2582-2584
    • /
    • 2003
  • 역전파 신경망 (BPNN)은 반도체 공정 모델링에 효과적으로 응용되고 있다. 뉴런의 활성화 함수는 동일한 값을 가지며, 이로 인해 예측정확도를 증진하는 데에는 한계가 있었다. 본 연구에서는 난수발생기(Random generator-RG)를 이용하여 뉴런 경사들이 다중값을 가지도록 최적화하였다. 본 기법은 은닉충의 뉴런수의 함수로 고찰하였으며, 종래의 고정된 경사를 갖는 모델과 그 성능을 비교 평가하였다. 평가에 이용된 데이터는 플라즈마 식각 공정데이터이며, 모델에 이용된 응답은 식각률과 프로파일 각이다. 비교결과 종래의 모델에 비해 예측정확도가, 식각률의 경우 19%-43%, 프로파일의 경우 10%-56% 정도 향상하였으며, 이는 제안된 기법이 모델개발에 매우 효과적으로 적용될 수 있음을 보여준다.

  • PDF

The Application of BP and RBF Neural Network Methods on Vehicle Detection in Aerial Imagery

  • Choi, Jae-Young;Jang, Hyoung-Jong;Yang, Young-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.473-481
    • /
    • 2008
  • This paper presents an approach to Back-propagation and Radial Basis Function neural network method with various training set for automatic vehicle detection from aerial images. The initial extraction of candidate object is based on Mean-shift algorithm with symmetric property of a vehicle structure. By fusing the density and the symmetry, the method can remove the ambiguous objects and reduce the cost of processing in the next stage. To extract features from the detected object, we describe the object as a log-polar shape histogram using edge strengths of object and represent the orientation and distance from its center. The spatial histogram is used for calculating the momentum of object and compensating the direction of object. BPNN and RBFNN are applied to verify the object as a vehicle using a variety of non-car training sets. The proposed algorithm shows the results which are according to the training data. By comparing the training sets, advantages and disadvantages of them have been discussed.

Modeling sulfuric acid induced swell in carbonate clays using artificial neural networks

  • Sivapullaiah, P.V.;Guru Prasad, B.;Allam, M.M.
    • Geomechanics and Engineering
    • /
    • v.1 no.4
    • /
    • pp.307-321
    • /
    • 2009
  • The paper employs a feed forward neural network with back-propagation algorithm for modeling time dependent swell in clays containing carbonate in the presence of sulfuric acid. The oedometer swell percent is estimated at a nominal surcharge pressure of 6.25 kPa to develop 612 data sets for modeling. The input parameters used in the network include time, sulfuric acid concentration, carbonate percentage, and liquid limit. Among the total data sets, 280 (46%) were assigned to training, 175 (29%) for testing and the remaining 157 data sets (25%) were relegated to cross validation. The network was programmed to process this information and predict the percent swell at any time, knowing the variable involved. The study demonstrates that it is possible to develop a general BPNN model that can predict time dependent swell with relatively high accuracy with observed data ($R^2$=0.9986). The obtained results are also compared with generated non-linear regression model.

Estimation of Creep Cavities Using Neural Network and Progressive Damage Modeling (신경회로망과 점진적 손상 모델링을 이용한 크리프 기공의 평가)

  • Jo, Seok-Je;Jeong, Hyeon-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.455-463
    • /
    • 2000
  • In order to develop nondestructive techniques for the quantitative estimation of creep damage a series of crept copper samples were prepared and their ultrasonic velocities were measured. Velocities measured in three directions with respect to the loading axis decreased nonlinearly and their anisotropy increased as a function of creep-induced porosity. A progressive damage model was described to explain the void-velocity relationship, including the anisotropy. The comparison of modeling study showed that the creep voids evolved from sphere toward flat oblate spheroid with its minor axis aligned along the stress direction. This model allowed us to determine the average aspect ratio of voids for a given porosity content. A novel technique, the back propagation neural network (BPNN), was applied for estimating the porosity content due to the creep damage. The measured velocities were used to train the BP classifier, and its accuracy was tested on another set of creep samples containing 0 to 0.7 % void content. When the void aspect ratio was used as input parameter together with the velocity data, the NN algorithm provided much better estimation of void content.

Evolutionary Learning-Rate Selection for BPNN with Window Control Scheme

  • Hoon, Jung-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.301-308
    • /
    • 1997
  • The learning speed of the neural networks, the most important factor in applying to real problems, greatly depends on the learning rate of the networks, Three approaches-empirical, deterministic, and stochastic ones-have been proposed to date. We proposed a new learning-rate selection algorithm using an evolutionary programming search scheme. Even though the performance of our method showed better than those of the other methods, it was found that taking much time for selecting evolutionary learning rates made the performance of our method degrade. This was caused by using static intervals (called static windows) in order to update learning rates. Out algorithm with static windows updated the learning rates showed good performance or didn't update the learning rates even though previously updated learning rates shoved bad performance. This paper introduce a window control scheme to avoid such problems. With the window control scheme, our algorithm try to update the learning ra es only when the learning performance is continuously bad during a specified interval. If previously selected learning rates show good performance, new algorithm will not update the learning rates. This diminish the updating time of learning rates greatly. As a result, our algorithm with the window control scheme show better performance than that with static windows. In this paper, we will describe the previous and new algorithm and experimental results.

  • PDF