• Title/Summary/Keyword: BOD/COD removal

Search Result 291, Processing Time 0.032 seconds

조류를 이용한 유기성 폐수 처리 시스템과 물벼룩 성장 조건

  • Jo, Jae-Hun;Kim, Jun-Hwi;Lee, Jeong-Seop;Yun, Seong-Myeong;Kim, Si-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.568-571
    • /
    • 2001
  • Food wastewater eluted from the three-stage methane fermentation system developed in this lab showed high concentrations of TCOD, BOD, T-N and T-P. Because the effluent of biological filter chamber (BFC) still had high concentration of nitrogen and organic material, the effluent was treated with algal periphyton system using algae. The removal rates of COD, T-N and T-P wer 96, 98 and 91%, respectively, in this system. The grown algae could digested byy waterfleas using the ecological food chain system. Food wastewater is better than algal culture medium for growth of waterflea, Moima Macrocopa. During 12days, the individual of waterflea increased to 180 in the food wastewater containing a T-N concentration of 150 mg/ ${\ell}$.

  • PDF

Treatment of Livestock Wastewater with Coagulant-loess (황토를 이용한 축산폐수의 처리에 관한 연구)

  • Park, Jin-Hee;Kim, Bo-Guk;Won, Chan-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1799-1808
    • /
    • 2000
  • To investigate the applicability of loess as a coagulant. the optimum conditions of coagulation and efficiency comparison of several coagulants (PAC, PACS, LAS) in chemical treatment of livestock wastewater were performed. As a result, the optimum mixing ratio of loess and lime(CaO) was 3:7. The optimum dosage of the mixed coagulant was 30 g/L. The optimum speed for rapid mixing of the mixed coagulant was 200 rpm at 1 min. and the optimum speed for slow mixing was 50 rpm at 10 min. The mixed coagulant showed the removal efficiency of turbidity, SS, BOD, $COD_{cr}$. T-P and TKN to 95.8%, 92.5%, 71.6%, 71.1%, 98.2% and 32.5%, respectively, which was better than other several coagulants. The mixed coagulant was possible to use as substitutional coagulants of traditional coagulant, and the producted sludge can use as a soil amendments.

  • PDF

Statistical Characteristics of An Advanced Wastewater Treatment Plant for Leather Industry (피혁폐수 고도처리시설의 통계학적 특성)

  • Yang, H.J.;Kwon, O.S.;Kim, J.H.;Kim, S.H.;Lee, S.J.;Jung, D.I.
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.740-747
    • /
    • 2007
  • The advanced wastewater treatment plant of leather industry was selected to evaluated with its effluent water quality and statistical characteristics. Most of pollutants removal efficiencies were over 90% as well. And 95% reliability of effluent concentration were 106.8 mg/L of $COD_{mn}$, 72.04 mg/L of TN. However Effluent quality of TN exceeds the regulated limit. The range of coefficient of variation (CV) were between 0.18 and 2.49. Also, coefficient of reliability (COR) were between $0.03(BOD_5){\sim}0.63(COD_{mn})$ and 0.43 in terms of T-N, $Z_{l-a}$(Normalized Percentiles) value were 55.7 and 2.25 in terms of $BOD_5$ and T-N as shown in the following table.

Analysis of First Flush of Recreation Park and Removal Rate According to Rainfall-Runoff Storage Depth (위락시설지역의 초기세척현상과 초기 강우-유출고 저류에 따른 저감효율 분석)

  • Jung, Jae-Woon;Park, Ha-Na;Choi, Dong-Ho;Baek, Sang-Soo;Yoon, Kwang-Sik;Baek, Won-Jin;Beam, Jin-A;Lim, Byung-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.648-655
    • /
    • 2013
  • Nonpoint source pollution characteristics of recreation park was investigated. Runoff ratio of recreation park ranged 23-57%, which was lower than other urban area since impervious area was less than 37%. The average BOD, COD, TOC, SS, T-N, T-P, were 14.09, 32.86, 12.19, 121.51, 7.78 and 0.72 mg/L, respectively. First flush of recreation park was analyzed by normalized cumulative load - volume curve and mass first flush ratio(MFFn), MFF10 for BOD, COD, SS, T-P, T-N, TOC were 2.90, 1.59, 2.15, 2.74, 2.60, and 1.59, respectively. Observed data showed that 62% of pollutant could be removed by storaging 5 mm rainfall-runoff and even 3 mm depth could store up to 50% of pollutant in runoff.

An Experimental Study on Water-Purification Properties of Concrete Using Effective Micro-Organisms (유용미생물을 이용한 콘크리트의 수질정화특성에 관한 실험적 연구)

  • Seo, Dae-Seuk;Jeon, Jin-yong;Kim, Jeong-Hwan;Kwon, Hyuk-Jun;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.757-760
    • /
    • 2008
  • Recently, improvements in the standard of living in industrial area require establishment of a convenient residential environment in order to enhance the quality of living, To achieve such an environment, it is necessary to effectively reduce or prevent various environmental problems occurring in and around residential areas. In this study, We focused on the water-purification properties of concrete using effective micro-organisms. Such as SS, BOD, COD, T-P, T-N. The ability of the removal of SS, T-P, T-N in the test water is superior to concrete using effective micro-organisms. As a result, concrete using effective micro-organisms has sufficient performance of water-purification.

  • PDF

Shipboard sewage treatment using Membrane Sequence Batch Reactor (MSBR을 이용한 크루즈선 오·폐수 처리 장치)

  • Kim, In-Soo;Lee, Eon-Sung;Oh, Yeom-Jae;Kim, Eog-Jo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.383-388
    • /
    • 2010
  • Lab scale experiment study was carried out for biological process development on cruise. SBR(Sequence Batch Reactor), MBR(Membrane Bioreactor), and MSBR(Membrane Sequence Batch Reactor) system were investigated for practical application on shipboard sewage treatment. From the results it was suggested that MSBR system might be suitable process for cruise in terms of pollutant removal efficiency, maintenance and special environmental conditions of cruise. About 99% of BOD, 98% of COD and 99% of SS were removed in MSBR system. In addition, about 76% of total nitrogen was reduced and the total phosphorus reduction averaged 59%.

Characteristics of methane production for treatment of brewery wastewater using anaerobic filter (혐기성 필터를 이용한 맥주 폐수 처리에서 메탄 생산 특성)

  • Choi, Young-Ki;Choi, Suk Soon;Chung, Hyung Keun;Jeong, Tae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.29-34
    • /
    • 2011
  • In the present work, the anaerobic filter was used to treat the high concentration of organic wastewater which was produced in the beer production process. During the whole operation periods, wastewater treatment with methane production was effectively performed. The average removal efficiencies of BOD, CODcr, SS, TN and TP were 61.4, 60.9, 31.4, 70.7 and 70.0 %, respectively. Also, methane content in the total gas and methane production amount were 68.8 % and $0.08{\sim}0.77m^3CH_4/kgCOD$, respectively. As a consequence, the practical anaerobic digestion technology developed in this study showed a feasibility of an effective method to treat brewery wastewater with enhancing the methane productivity.

The method for total organic carbon analysis employing TiO2 photocatalyst (이산화티타늄 광촉매를 이용한 총유기탄소 분석방법)

  • Park, Buem Keun;Kim, Sung Mi;Lee, Young-Jin;Paik, Jong-Hoo;Shin, Jeong Hee
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.320-325
    • /
    • 2021
  • Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) methods are conventional analytical methods to analyze water quality. Both of these methods are technically indirect measurement methods, require complicated preconditions, and are time-consuming. On the other hand, the total organic carbon (TOC) method is a direct and fast measurement method which is more intuitive and accurate than the BOD and COD methods. However, general TOC analysis methods involve complicated processes and high power consumption owing to the process of phase transition from liquid to gas by a high-temperature heater. Furthermore, periodic consumables are also required for the removal of inorganic carbon (IC). Titanium dioxide (TiO2) is one of the most suitable photocatalysts for simple processes. Its usage involves low power consumption because it only reacts with the organic carbon (OC) without the requirement of any other reagents and extra processes. We investigated a TiO2 photocatalyst-based TOC analysis for simple and affordable products. TiO2-coated fiber substrate maintained under carbon included water was exposed to ultraviolet (UV) radiation of wavelength 365 nm. This method is suitable for the real-time monitoring of water pollution because of its fast reaction time. Its linear property is also sufficient to match the real value.

A Review of Constructed Wetlands for Water Quality Management in India

  • Farheen, Shaista;Geronimo, Franz Kevin;Guerra, Heidi;Reyes, Nash Jett;Choi, Hyseon;Jeon, Minsu;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.129-129
    • /
    • 2021
  • Constructed wetlands (CW) are artificially developed wetlands that are used to control water pollution. In central India, the field application of CW started on the late 1990s but are mostly focused on wastewater treatment. In this paper, different existing and experimental studies on constructed wetlands were reviewed to be able to determine the current status of wetlands in India to identify the type of CW that is more suitable in managing a specific target pollutant and type of wastewater. Wetlands were categorized into three types: vertical flow, horizontal flow, and hybrid while the wastewater were classified as domestic and industrial. Based on the review, 80% of constructed wetlands are used for treating domestic wastewater while 20% are treating industrial wastewater. Inflow analysis showed that industrial wastewater in hybrid constructed wetland produced the highest average concentration for parameters like COD (2851 mg/L) and BOD (5715 mg/L) while the lowest concentration was TN (13.97 mg/L) found in municipal wastewater. In terms of removing nonpoint source pollutants, it was revealed that vertical flow constructed wetlands (VFCW) are more effective at removing TSS and BOD as compared to horizontal flow constructed wetlands (HFCW) and hybrid constructed wetlands (HCW). HCW were found to be capable of efficiently removing COD and TN. Meanwhile, HFCW showed the highest TP removal among all the types of wetlands. In addition, VFCW were more effective for domestic wastewater while HCW are more effective for treating industrial wastewater. Lastly, there is currently a need to conduct further research on constructed wetlands for industrial wastewater as well as stormwater treatment to be able to gather more data and improve wetland design, performance, and maintenance.

  • PDF

Effects of Advanced Oxidation of Penicillin on Biotoxicity, Biodegradability and Subsequent Biological Treatment (고도산화공정 처리가 페니실린의 생독성, 생분해도 및 생물학적 분해에 미치는 영향)

  • Luu, Huyen Trang;Minh, Dang Nhat;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.690-695
    • /
    • 2018
  • Advanced oxidation processes (AOPs) composed of O3 and UV were applied to degrade penicillin (PEN). The degradation efficiency was evaluated in terms of changes in the absorbance (ABS) and total organic carbon (TOC). The combination of $O_3/H_2O_2/UV$ and $O_3/UV$ showed the best performance for the reduction of ABS (100% for 9 min) and TOC (70% for 60 min) values, although the mineralization was uncompleted under the experimental condition in this study. The change in biotoxicy was monitored with Escherichia coli susceptibility and Vibrio fischeri biofluorescence. The E. coli susceptibility was eliminated completely for 9 min by $O_3/UV$, and the toxicity to V. fischeri biofluorescence was 57% reduced by $O_3/H_2O_2/UV$. For the ultimate treatment of PEN, it is suggested that an AOP using $O_3/UV$ is followed by biological treatment, utilizing the enhanced biodegradability by the AOP. During 30 min of $O_3/UV$ treatment, the $BOD_5/COD$ ratio as an indication of biodegradability showed about 4-fold increment, compared to that of using a non-treated sample. TOC removal rate for AOP-pretreated PEN wastewater increased 55% compared to that of using the non-pretreated one through an aerobic biological treatment by Pseudomonas putida for artificial wastewater containing 20 mg/L of PEN. In conclusion, $O_3/UV$ process is recommended as a pretreatment step prior to an aerobic biological process to improve the ultimate degradation of penicillin.