• 제목/요약/키워드: BOD(Ball-on disk)

검색결과 2건 처리시간 0.014초

MEMS 소자의 고체윤활박막으로 활용하기 위한 다이아몬드상 카본 박막의 트라이볼로지 특성 분석 (A Study on Tribological Properties of Diamond-like Carbon Thin Film for the Application to Solid Lubricant of MEMS Devices)

  • 최원석;홍병유
    • 한국전기전자재료학회논문지
    • /
    • 제19권11호
    • /
    • pp.1010-1013
    • /
    • 2006
  • Hydrogenated Diamond-like carbon (DLC) films were Prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas for the application to solid lubricant of MEMS devices. We have checked the influence of varying RF power on tribological properties of DLC film. We have checked their performance as two kinds of method such as FFM (Friction Force Microscope) and BOD (Ball-on Disk) measurement. The friction coefficients and the contact number of cycles to steady state decreased as the increase of RF power with FFM and BOD measurement, respectively.

라만 맵핑 방식을 사용한 다이아몬드상 카본박막의 미세구조변화에 관한 연구 (A Study on Detailed Structural Variation of Diamond-like Carbon Thin Film by a Novel Raman Mapping Method)

  • 최원석
    • 한국전기전자재료학회논문지
    • /
    • 제19권7호
    • /
    • pp.618-623
    • /
    • 2006
  • Hydrogenated Diamond-like carbon (DLC) films were prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas. The wear track on the DLC films was examined after the ball-on disk (BOD) measurement with a Raman mapping method. The BOD measurement of the DLC films was performed for 1 to 3 hours with a 1-hour step time. The sliding traces on the hydrogenated DLC film after the BOD measurement were also observed using an optical microscope. The surface roughness and cross-sectional images of the wear track were obtained using an atomic force microscope (AFM). The novel Raman mapping method effectively shows the graphitization of DLC films of $300{\mu}m\times300{\mu}m$ area according to the sliding time by G-peak positions (intensities) and $I_D/I_G$ ratios.