• 제목/요약/키워드: BNi Filler Metal

검색결과 10건 처리시간 0.029초

액체 로켓엔진 연소기 사용 재료의 상온 브레이징부 인장강도 특성 (The Tensile Strength at Room Temperature of Brazing Section for Materials used for Liquid Rocket Engine Combustion Chamber)

  • 정용현;류철성;최민수
    • 한국추진공학회지
    • /
    • 제7권4호
    • /
    • pp.73-79
    • /
    • 2003
  • 재생 냉각형 액체 로켓엔진 제작에 주로 사용되는 합금에 대하여 브레이징 접합 강도 시험 및 파단면 분석을 실시하였다. 브레이징 시 사용되는 용가재(Filler Metal)로 니켈을 주성분으로 하는 BNi-2, BNi-7를 사용하였다. 5종의 합금에 대하여 모두 12개의 시편을 제작하여 인장 강도 시험 및 금속현미경을 통한 접합면 분석을 통해 재료 및 용가재 특성을 분석하였다. 크롬동과 타 합금과의 접합 강도가 크롬/지르코늄동과 타 합금과의 접합 강도보다 높게 나왔다. BNi-2가 BNi-7보다 모재에 대한 젖음성이 보다 더 우수하여 접합면 인장 강도가 BNi-2로 사용한 경우가 BNi-7을 사용한 경우보다 더 높게 나왔다.

진공브레이징에 의한 SUS304 스테인리스강과 BNi-2계 삽입금속의 접합특성 : Ni기 삽입금속에 의한 브레이징 접합성의 기초적 검토(I) (Brazing Property of SUS304 Stainless Steel and BNi-2 Filler Metal with Vacuum Brazing : Fundamental Study on Brazeability with Ni-Based Filler Metal(I))

  • 이용원;김종훈
    • 한국재료학회지
    • /
    • 제17권3호
    • /
    • pp.142-146
    • /
    • 2007
  • Vacuum brazing method has been coming to an important process as one of the new fabricating techniques of metals and alloys. In this study, a vacuum brazing of SUS304 stainless steel with BNi-2 filler metal was carried out in $1{\times}10^{4}$ Torr of vacuum atmosphere. The formation of brittle intermetallic compounds in brazed joints between SUS304 stainless steel and BNi-2 filler metal is a major concern, since they considerably degrade the mechanical properties of joints. To obtain enough stable joining strength, it is necessary to understand the unique properties of brazing process with Ni-based filler metals containing boron. So, in this research we investigated the performance of SUS304/BNi-2 brazed system and the brazed joint properties were evaluated at room temperature by using tensile test. Metallurgical and fractographic analysis were used to characterize the microstructure, the mechanisms of brazing, and joint failure modes.

BNi-2계 삽입금속에 의한 SUS304 스테인리스강 접합체의 강도와 조직에 미치는 브레이징 온도의 영향 : Ni기 삽입금속에 의한 브레이징 접합성의 기초적 검토(II) (Influence of Brazing Temperature on Strength and Structure of SUS304 Stainless Steel Brazed System with BNi-2 Filler Metal : Fundamental Study on Brazeability with Ni-Based Filler Metal(II))

  • 이용원;김종훈
    • 한국재료학회지
    • /
    • 제17권3호
    • /
    • pp.179-183
    • /
    • 2007
  • A plate heat exchanger (PHE) normally uses vacuum brazing technology for connecting plates and fins. However, the reliability of high temperature brazing, especially with nickel-based filler metals containing boron the formation of brittle intermetallic compounds (IMCs) in brazed joints is of major concern. since they considerably degrade the mechanical properties. This research was examined the vacuum brazing of commercially SUS304 stainless steel with BNi-2 (Ni-Cr-B-Si) filler metal, and discussed to determine the influence of brazing temperatures on the microstructure and mechanical strength of brazed joints. In the metallographic analysis it is observed that considerable large area of Cr-B intermetallic compound phases at the brazing layer and the brazing tensile strength is related to removal of this brittle phase greatly. The mechanical properties of brazing layer could be stabilized through increasing the brazing temperature over $100^{\circ}C$ more than melting temperature of filler metals, and diffusing enough the brittle intermetallic compound formed in the brazing layer to the base metal.

Ni기 삽입금속에 의해 진공 브레이징된 stainless steel의 특성평가 (Evaluation of the Vacuum brazed stainless steel by Ni-based filler metals)

  • 장세훈;홍지민;정창열;최세원;오익현
    • 한국재료학회지
    • /
    • 제17권6호
    • /
    • pp.342-346
    • /
    • 2007
  • Microstructure and tensile strength of the vacuum brazed stainless steel were investigated in this study. For vacuum brazing of the stainless steel 303 and 304, the BNi-2, 3, 4 and 7 were used as filler metals. Among these filler metals, the BNi-2 showed excellent wettability at $1050^{\circ}C$. Indeed, the brazed stainless steel using the BNi-2 showed the highest tensile strength (483 MPa) among all brazed specimens. This is attributed to degree of interfacial reaction between the filler metal and stainless steel. Brazed stainless steel with BNi-2, 3 filler metals showed almost elastic deformation followed by plastic yielding and strain hardening up to a peak stress. On the other hand, it is likely that the fracture of the brazed specimens with BNi-4, 7 was occurred in elastic range without plastic yielding up to a peak stress.

오일샌드 플랜트용 초경합금과 스테인레스강의 진공브레이징 특성평가 (Evaluation of Vacuum Brazed WC and Stainless Steel for Oil Sands Plant)

  • 장세훈;조승현;안성우;허중식;김인표;오익현
    • 한국유체기계학회 논문집
    • /
    • 제19권3호
    • /
    • pp.48-52
    • /
    • 2016
  • Microstructure and tensile strength of the vacuum brazed stainless steel(STS304) and WC-8 %Co were investigated. For brazing, the BNi-2, 3(A.W.S standard) were used as filler metals. It was found that metallic compounds of W-Ni were observed at the between WC metrix and brazed layer. Among these filler metals, the BNi-2 showed excellent wettability, but tensile strength was lower than BNi-3. The fracture of the brazed specimens with BNi-2 was occurred at the between WC metrix and brazed layer. The fracture of the brazed specimens with BNi-3 was occurred at the between WC metrix and brazed layer, and between brazed layer and stainless steel.

초내열합금 wide-gap 브레이징부의 미세조직 및 기계적 성질 변화에 미치는 첨가금속분말의 영향 (Effect of Additive Powder on Microstructural Evolutions and Mechanical Properties of the Wide-gap Brazed Region in IN738 superalloy)

  • 김용환;권숙인;변재원;이원식
    • 한국재료학회지
    • /
    • 제15권6호
    • /
    • pp.399-407
    • /
    • 2005
  • The effect of IN738 additive powder on microstructure and mechanical properties of the wide-gap region brazed with BNi-3 filler metal powder was investigated. The wide-gap brazing was conducted in a vacuum of $2\times10^{-5}torr\;at\;1200^{\circ}C$ with various powder mixing ratios of additive to filler powders. The microstructures of the wide-gap brazed region were analyzed by SEM and AES. The region brazed with only BNi-3 filler metal powder had a microstructure consisted of proeutectic, binary eutectic and ternary eutectic structure, while that brazed with a mixture of IN738 additive powder and BNi-3 filler metal powder had a microstructure consisted of IN738 additive powder, binary eutectic of $Ni_3B-Ni$ solid solution and (Cr, W)B. The fracture strength of the wide-gap brazed region was about 680 MPa regardless of the additive powder mixing ratios. Cracks were initiated at the (Cr, W)B and binary eutectic of $Ni_3B-Ni$ solid solution, and propagated through them in the wide-gap brazed region, which lowered the fracture strength of the region.

Fe-Cr-AI-Y합금에서 브레이징 접합부의 고온산화거동 (High Temperature Oxidation Behavior of the Brazed Joint in Fe-Cr-Al-Y Alloy)

  • 문병기;최철진;박원욱
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.201-208
    • /
    • 1997
  • 본 연구에서는 배기 가스 촉매정화용 금속담체 지지체의 접합특성을 향상시키기 위하여, 브레이징 접합부의 고온내산화성에 미치는 브레이징 합금원소의 영향을 고찰하였다. 브레이징은 Ni계 합금인 BNi-5 분말(Ni-Cr-Si계합금)과 MBF-50 foil(Ni-Cr-Si-B계 합금)을 사용하여 $1200^\circC$의 진공중에서 행하였다. 약 1-1.5 wt%의 B을 함유한 MBF-50으로 브레이징된 시편이 BNi-5로 브레이징된 시편에 비해 내산화성이 떨어지는 것으로 나타났으며. 이것은 합금/브레이징 계변을 따라 형성된 Kirkendall void를 통한 산소의 빠른 침투로 인한 것으로 생각된다.

  • PDF

Ni기 삽입금속에 의해 진공 브레이징된 STS303-Cu의 특성평가 (Evaluation of the STS303-Cu vacuum-brazed by Ni-based alloy)

  • 장세훈;홍지민;최세원;강창석;김호성;오익현
    • 한국재료학회지
    • /
    • 제17권6호
    • /
    • pp.293-297
    • /
    • 2007
  • Microstructure and tensile strength of the vacuum brazed stainless steel(STS303) and Cu were investigated. For brazing, the BNi-2, 3, 4, 6 and 7 (A.W.S standard) were used as filler metals. The Oxides such as $Cr_2O_3$ and $SiO_2$ were observed at brazed layers between STS303 and Cu matrix. Also, the intermetallic compounds of Cr-B and Ni-P were observed at brazed layers. Brazed STS303-Cu specimens with BNi-2, 3, 4 filler metals showed almost elastic deformation followed by plastic yielding and strain hardening up to a peak stress. On the other hand, it is likely that the fracture of the brazed specimens with BNi-6 and 7 was occurred in elastic range without plastic yielding up to a peak stress. Among these filler metals, the BNi-2 brazed at $1050^{\circ}C$ showed excellent wettability and the highest tensile strength (101.6MPa).

Ni계 합금으로 브레이징된 Fe-Cr-Al 합금 접합부의 주기산화거동 (Cyclic Oxidation Behavior of Fe-Cr-Al Joint Brazed with Nickel-Base Filler Metal)

  • 문병기;최철진;박원욱
    • 연구논문집
    • /
    • 통권29호
    • /
    • pp.141-149
    • /
    • 1999
  • Brazing of Fe-Cr-Al alloy was carried out at $1200^{\circ}C$ in vacuum furnace using nickel-based filler metals : BNi-5 powder(Ni-Cr-Si-Fe base alloy} and MBF-50 foil (Ni-Cr-Si-B). The effect of boron content on the stability of oxide scale on the brazed joint was investigated by means of cyclic oxidation test performed at $1050^{\circ}C$ and $1200^{\circ}C$. Apparently, the joints brazed with MBF-50 containing boron showed relatively stable oxidation rates compared to boron-free BNi-5 at both temperatures. However, it was considered that the slower weight loss of MBF-50 brazed specimen wasn’t resulted from the low oxidation rate but from the spallation of oxide layer. The oxide layer consisted of thick spinel oxide on the surface and $Al_2 O_3$ internal oxide layer along the interface between mother alloy and braze, the mother alloy was also eroded seriously by the formation of spinel oxides such as $FeCr_2 O_4$ and $NiCr_2 O_4$ on the surface, likely to be induced by the change of oxide forming mechanism due to diffusion of boron from the braze. On the contrary, the joint brazed with BNi-5 showed the good oxidation resistance during the cyclic oxidation test. It seems that the oxidation can be retarded by the formation of stable $Al_2 O_3$ layer at the surface.

  • PDF

고압용기의 계장선 통과부위 밀봉기술 개발 (Development of Sealing Technology for Instrumentation Feedthrough of High Pressure Vessel)

  • 정황영;홍진태;안성호;정창용;이종민;이철용
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.137-143
    • /
    • 2011
  • Fuel Test Loop(FTL) is a facility which could conduct a fuel irradiation test at HANARO(High-flux Advanced Neutron Application Reactor). FTL simulates commercial NPP's operating conditions such as the pressure, temperature and neutron flux levels to conduct the irradiation and thermo-hydraulic tests. The In-Pile Test Section(IPS) installed in HANARO FTL is designed as a pressure vessel design conditions of $350^{\circ}C$, 17.5MPa. The instrumentation MI-cables for thermocouples, SPND and LVDT are passed through the sealing plug, which is in the pressure boundary region and is a part of instrumentation feedthrough of MI-cable. In this study, the brazing method and performance test results are introduced to the sealing plug with BNi-2 filler metal, which is selected with consideration of the compatibility for the coolant. The performance was verified through the insulation resistance test, hydrostatic test, and helium leak test.