• Title/Summary/Keyword: BLUP

Search Result 48, Processing Time 0.03 seconds

The Accuracy of Genomic Estimated Breeding Value Using a Hanwoo SNP Chip and the Pedigree Data of Hanwoo Cows in Gyeonggi Province (한우 SNP Chip 및 혈통 데이터를 이용한 경기 한우 암소의 유전능력평가 정확도 분석)

  • Lee, Gwang Hyeon;Lee, Yoon Seok;Moon, Seon Jeong;Kong, Hong Sik
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.279-284
    • /
    • 2022
  • This study was conducted to establish a genetic evaluation system applicable to general farms for improving cows raised on farms. The analysis used Best Linear Unbiased Prediction (BLUP) and Genomic Best Linear Unbiased Prediction (GBLUP) for 619 cows raised in Gyeonggi-do Province and compared and analyzed the accuracy of the estimated breeding value according to four traits (carcass weight, loineye muscle area, back fat thickness, and marbling). In the case of the GBLUP method, the size of the reference population was divided into different four groups and analyzed. The analysis results confirmed that the accuracy of the breeding value of each trait increased as the size of the GBLUP reference population increased. Comparing the accuracy of the breeding values estimated using the BLUP and GBLUP methods, it was confirmed that when the breeding values were estimated using the GBLUP method, they increased by 0.10, 0.09, 0.09, and 0.11 for carcass weight, eye muscle area, back fat thickness, and marbling scores, respectively. Applying the GBLUP method to the evaluation and selection of cows can enable precise and accurate individual selection, while increasing the size of the reference population can make even more accurate individual selection possible, thus increasing selection efficiency.

A Comparison of Predictors in a Panel Data Regression Model (패널회귀모형에서 예측량의 효율에 관한 비교)

  • 정병철;조민화;송석헌
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.121-135
    • /
    • 2001
  • This paper derives the BLUP in a panel data regression model with two way error components and investigates the performance of various predictors. Through simulation study and real data anaysis some of basic finding is following: the computationally simple FGLS(AM, SA) predictors perform reasonably well when compared with the computationally involved MLE and RMLE predictors.

  • PDF

Sire Evaluation Using Animal Model and Conventional Methods in Murrah Buffaloes

  • Jain, A.;Sadana, D.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.9
    • /
    • pp.1196-1200
    • /
    • 2000
  • First lactation records of 683 Murrah buffaloes maintained at National Dairy Research Institute, Karnal, were used for comparing the sire evaluation for age at first calving, first lactation 305-day or less milk yield and first service period. The sires were evaluated using Simple daughters average, Contemporary comparison, Least-squares and BLUP methods. The BLUP evaluations were obtained under single-, two- and three-trait individual animal models. The results revealed that for taking a decision regarding the method of sire evaluation to be used for selecting sires with high breeding values, criteria of the rank correlation could be misleading and comparison of the selected sires is likely to give a veritable picture. The Best Linear Unbiased Prediction method under multi-trait animal model incorporating first lactation milk yield with first service period as a covariable and age at first calving in the model was found to be more efficient and accurate for sire selection in Murrah buffaloes.

The effect of progeny numbers and pedigree depth on the accuracy of the EBV with the BLUP method

  • Jang, Sungbong;Kim, So Yeon;Lee, Soo-Hyun;Shin, Min Gwang;Kang, Jimin;Lee, Dooho;Kim, Sidong;Noh, Seung Hee;Lee, Seung Hwan;Choi, Tae Jeong
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.293-301
    • /
    • 2019
  • This study was done to estimate the effect of progeny numbers and pedigree depth on the accuracy of the estimated breeding value (EBV) using best linear unbiased prediction (BLUP) method in Hanwoo. The experiment groups (sire = 100, 200, and 300; progeny = 4 and 8) were made by random sampling and by genetic evaluation of the following traits: Body weight (BW), carcass weight (CW), eye muscle area (EMA), back fat thickness (BFT) and marbling score (MS9). As a result of the genetic evaluation, the accuracy of the EBV was roughly 30 - 60% with 4 progenies, and the accuracy of the EBV increased by about 50 - 75% with 8 progenies. In the other words, when the number of progenies increased from 4 to 8, the accuracy of the EBV simultaneously increased by about 15 - 20%. Moreover, when the number of sires was higher, variations in the accuracy of the EBV within the groups for each trait decreased. Therefore, this result indicates that not only the number of progeny but also the number of sires can affect the accuracy of the EBV. Consequently, collecting information on the progeny and careful management of that information are very important things in the Hanwoo breeding system. Therefore, the EBV can show more precise results when conducting genetic evaluations.

The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents

  • Lee, Young-Sup;Shin, Donghyun;Lee, Wonseok;Taye, Mengistie;Cho, Kwanghyun;Park, Kyoung-Do;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to $2^*SNP$ effect.

CONSIDERATIONS IN THE DEVELOPMENT OF FUTURE PIG BREEDING PROGRAM - REVIEW -

  • Haley, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.4
    • /
    • pp.305-328
    • /
    • 1991
  • Pig breeding programs have been very successful in the improvement of animals by the simple expedient of focusing on a few traits of economic importance, particularly growth efficiency and leanness. Further reductions in leanness may become more difficult to achieve, due to reduced genetic variation, and less desirable, due to adverse correlated effects on meat and eating quality. Best linear unbiased prediction (BLUP) of breeding values makes possible the incorporation of data from many sources and increases the value of including traits such as sow performance in the breeding objective. Advances in technology, such as electronic animal identification, electronic feeders, improved ultrasonic scanners and automated data capture at slaughter houses, increase the number of sources of information that can be included in breeding value predictions. Breeding program structures will evolve to reflect these changes and a common structure is likely to be several or many breeding farms genetically linked by A.i., with data collected on a number of traits from many sources and integrated into a single breeding value prediction using BLUP. Future developments will include the production of a porcine gene map which may make it possible to identify genes controlling economically valuable traits, such as those for litter size in the Meishan, and introgress them into nucleus populations. Genes identified from the gene map or from other sources will provide insight into the genetic basis of performance and may provide the raw material from which transgenic programs will channel additional genetic variance into nucleus populations undergoing selection.

Genomic selection through single-step genomic best linear unbiased prediction improves the accuracy of evaluation in Hanwoo cattle

  • Park, Mi Na;Alam, Mahboob;Kim, Sidong;Park, Byoungho;Lee, Seung Hwan;Lee, Sung Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1544-1557
    • /
    • 2020
  • Objective: Genomic selection (GS) is becoming popular in animals' genetic development. We, therefore, investigated the single-step genomic best linear unbiased prediction (ssGBLUP) as tool for GS, and compared its efficacy with the traditional pedigree BLUP (pedBLUP) method. Methods: A total of 9,952 males born between 1997 and 2018 under Hanwoo proven-bull selection program was studied. We analyzed body weight at 12 months and carcass weight (kg), backfat thickness, eye muscle area, and marbling score traits. About 7,387 bulls were genotyped using Illumina 50K BeadChip Arrays. Multiple-trait animal model analyses were performed using BLUPF90 software programs. Breeding value accuracy was calculated using two methods: i) Pearson's correlation of genomic estimated breeding value (GEBV) with EBV of all animals (rM1) and ii) correlation using inverse of coefficient matrix from the mixed-model equations (rM2). Then, we compared these accuracies by overall population, info-type (PHEN, phenotyped-only; GEN, genotyped-only; and PH+GEN, phenotyped and genotyped), and bull-types (YBULL, young male calves; CBULL, young candidate bulls; and PBULL, proven bulls). Results: The rM1 estimates in the study were between 0.90 and 0.96 among five traits. The rM1 estimates varied slightly by population and info-type, but noticeably by bull-type for traits. Generally average rM2 estimates were much smaller than rM1 (pedBLUP, 0.40 to0.44; ssGBLUP, 0.41 to 0.45) at population level. However, rM2 from both BLUP models varied noticeably across info-types and bull-types. The ssGBLUP estimates of rM2 in PHEN, GEN, and PH+ GEN ranged between 0.51 and 0.63, 0.66 and 0.70, and 0.68 and 0.73, respectively. In YBULL, CBULL, and PBULL, the rM2 estimates ranged between 0.54 and 0.57, 0.55 and 0.62, and 0.70 and 0.74, respectively. The pedBLUP based rM2 estimates were also relatively lower than ssGBLUP estimates. At the population level, we found an increase in accuracy by 2.0% to 4.5% among traits. Traits in PHEN were least influenced by ssGBLUP (0% to 2.0%), whereas the highest positive changes were in GEN (8.1% to 10.7%). PH+GEN also showed 6.5% to 8.5% increase in accuracy by ssGBLUP. However, the highest improvements were found in bull-types (YBULL, 21% to 35.7%; CBULL, 3.3% to 9.3%; PBULL, 2.8% to 6.1%). Conclusion: A noticeable improvement by ssGBLUP was observed in this study. Findings of differential responses to ssGBLUP by various bulls could assist in better selection decision making as well. We, therefore, suggest that ssGBLUP could be used for GS in Hanwoo proven-bull evaluation program.

A Space Model to Annual Rainfall in South Korea

  • Lee, Eui-Kyoo
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.445-456
    • /
    • 2003
  • Spatial data are usually obtained at selected locations even though they are potentially available at all locations in a continuous region. Moreover the monitoring locations are clustered in some regions, sparse in other regions. One important goal of spatial data analysis is to predict unknown response values at any location throughout a region of interest. Thus, an appropriate space model should be set up and their estimates and predictions must be accompanied by measures of uncertainty. In this study we see that a space model proposed allows a best interpolation to annual rainfall data in South Korea.

Analysis of Linear Regression Model with Two Way Correlated Errors

  • Ssong, Seuck-Heun
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.2
    • /
    • pp.231-245
    • /
    • 2000
  • This paper considers a linear regression model with space and time data in where the disturbances follow spatially correlated error components. We provide the best linear unbiased predictor for the one way error components. We provide the best linear unbiased predictor for the one way error component model with spatial autocorrelation. Further, we derive two diagnostic test statistics for the assessment of model specification due to spatial dependence and random effects as an application of the Lagrange Multiplier principle.

  • PDF

A Composite Estimator for Cut-off Sampling using Cost Function (절사표본 설계에서 비용함수를 고려한 복합추정량)

  • Sim, Hyo-Seon;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.43-59
    • /
    • 2014
  • Cut-off sampling has been widely used for a highly skewed population like a business survey by discarding a part of the population, so called a take-nothing stratum. For a more accurate estimate of the population total, Hwang and Shin (2013) suggested a composite estimator of a take-nothing stratum total that combined the survey results of a take-nothing stratum and a take-some sub-stratum (a part of take-some stratum). In this paper we propose a new cut-off sampling scheme by considering a cost function and a composite estimator based on the proposed sampling scheme. Small simulation studies compared the performances of known composite estimators and the new composite estimator suggested in this study. We also use Briquette Consumption Survey data for real data analysis.