• Title/Summary/Keyword: BIOMECHANICAL

Search Result 954, Processing Time 0.038 seconds

A Study on the Determination d Membership Function for Manual Materials Lifting (중량물 수인양에서의 구성함수 결정에 관한 연구)

  • 이종권;송서일
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.82-90
    • /
    • 1993
  • Manual lifting, as a part of Manual Materials Handling Activities, is recognized by authorities in the field of occupational health and safety as a major hazard to industrial workers. The most important problem in applying fuzzy model of manual materials lifting is the decision of membership functions on each approaches. : Biomechanical, Physiological, Psychophysical. The primary objectives of this paper suggests to process deciding the most acceptable membership functions for establishing permissible weights on manual lifting activities using fuzzy sets.

  • PDF

A Study on Automated 3-D Reconstruction Based on 2-D CT Image of Lumber Spine (요추의 2차원 CT 영상을 이용한 3차원 형상모델링의 자동화 연구)

  • 김성민;김성재;서성영;탁계례
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.5
    • /
    • pp.581-586
    • /
    • 1999
  • 척추의 생체역학적 해석을 위한 유한요소기법을 이용한 컴퓨터 시뮬레이션은 척추의 손상에 대한 발생원인과 기전을 이해하고 치료의 효과를 예측하는 유용한 수단으로 기대되고 있다. 본 논문에서는 요추의 2차원 CT 영상을 이용하여 유한요소해석을 위한 척추의 3차원 모델링에 소비되는 많은 시간을 줄일 수 있도록 3차원 형상모델을 CT 형상 데이터와 형상변수를 이용, 각각 구현하는 과정을 자동화하여 이를 비교하였다.

  • PDF

AN ISOMETRIC BIOMECHANICAL MODEL OF WORKER STRENGTH-KINETIC DATA FOR HUMAN MOTION (작업자 체력의 ISOMETRIC모델 분석을 위한 BASIC언어프로그램)

  • Park, Myeong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.23
    • /
    • pp.7-18
    • /
    • 1991
  • 인체의 운동은 많은 수의 자유도를 지닌 조인트(JOINT)와 링(LINK)의 복잡한 운동으로 표현될 수 있다. 이들 링크(LINK)의 회전 운동은 SINE, COSINE 자승 형태의 비선형 운동으로 이루어져있으나, 최근 PERSONAL COMPUTER의 발달로 복잡한 인체 운동의 수학적 모델에 대한 동력학적 DATA 계산이 가능해졌다. 본 연구에서는 5개의 링크(LINK)로 연결된 인체 움직임에 있어 링크(LINK)의 절대 운동(ABSOLUTE MOTION) 및 상대운동(RELATIVE MOTION)을 고려한 PLAGENHOEF의 운동 모델을 PERSONAL COMPUTER를 이용하여 인체 움직임의 동력학적 DATA를 얻을 수 있도록 BASIC 언어로 프로그램을 제기하였다.

  • PDF

Finite Element Prediction of Temperature Distribution in a Solar Grain Dryer

  • Uluko, H.;Mailutha, J.T.;Kanali, C.L.;Shitanda, D.;Murase, H
    • Agricultural and Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • A need exists to monitor and control the localized high temperatures often experienced in solar grain dryers, which result in grain cracking, reduced germination and loss of cooking quality. A verified finite element model would be a useful to monitor and control the drying process. This study examined the feasibility of the finite element method (FEM) to predict temperature distribution in solar grain dryers. To achieve this, an indirect solar grain dryer system was developed. It consisted of a solar collector, plenum and drying chambers, and an electric fan. The system was used to acquire the necessary input and output data for the finite element model. The input data comprised ambient and plenum chamber temperatures, prevailing wind velocities, thermal conductivities of air, grain and dryer wall, and node locations in the xy-plane. The outputs were temperature at the different nodes, and these were compared with measured values. The ${\pm}5%$ residual error interval employed in the analysis yielded an overall prediction performance level of 83.3% for temperature distribution in the dryer. Satisfactory prediction levels were also attained for the lateral (61.5-96.2%) and vertical (73.1-92.3%) directions of grain drying. These results demonstrate that it is feasible to use a two-dimensional (2-D) finite element model to predict temperature distribution in a grain solar dryer. Consequently, the method offers considerable advantage over experimental approaches as it reduces time requirements and the need for expensive measuring equipment, and it also yields relatively accurate results.

  • PDF

A Study of Influence of Asymmetrical Weight-Bearing on the LOS of Independent Ambulatory Hemiparetic Patients on Standing (편마비 환자의 비대칭적 체중지지가 기립균형 안정성 한계에 미치는 영향)

  • Kwon, Hyuk-Cheol;Jeong, Dong-Hoon
    • Physical Therapy Korea
    • /
    • v.7 no.2
    • /
    • pp.1-19
    • /
    • 2000
  • Decreased equilibrium in standing and walking is a common problem associated with hemiparesis secondary to cerebral vascular accident. In patients with hemiplegia, postural sway is increased and often displaced laterally over the non-affected leg, reflecting asymmetry in lower extremity weight bearing during standing balance. Human balance is a complex motor control task, requiring integration of sensory information, neural processing, and biomechanical factors. Limits of stability (LOS) is a one of the biomechanical factors. The purposes of this study were to establish the influence of asymmetrical weight-bearing on the LOS of independent ambulatory hemiparetic patients. The subjects of this study were 29 hemiparetic patients (18 males, 11 females) being treated as admitted or out patients at Young-Nam University Hospital and Taegu Catholic University Hospital, all of whom agreed to participate in the study. Participants were asked to lean and displace their center of gravity (COG) as far as possible in directions to the sides and front of the body. The LOS and weight-bearing ratio were measured with a Balance Performance Monitor (BPM) Dataprint Software Version 5.3. In order to assure the statistical significance of the results, the independent t-test and a Pearson's correlation were applied at the .05 and .01 level of significance. The results of this study were as follows: 1) There were statistically significant differences in anteroposterior LOS according to the cause of brain demage (p<.01). 2) There were statistically significant differences in mediolateral LOS according to the hemiparetic side (p<.05). 3) There were statistically significant differences in anteroposterior and mediolateral LOS according to the brain operation (p<.01). 4) The mediolateral LOS significantly correlated with weight-bearing ratio (p<.01).

  • PDF

Morphological and Biomechanical Study of the Pulley System of the Thumb

  • Kim, Ji-Won
    • Physical Therapy Korea
    • /
    • v.12 no.4
    • /
    • pp.33-40
    • /
    • 2005
  • The purpose of this study was to define more precisely the anatomy of the thumb flexor pulley system and to determine the relative contribution of each of the pulleys to the biomechanics of thumb motion at the metacarpophalangeal (MP) and interphalangeal (IP) joints. For this, 22 hands from 11 cadavers were used and randomly assigned to two groups. In the first group, the first annular (A1) pulley was cut first followed by the variable annular (Av) pulley and then the oblique pulley. In the second group, the oblique pulley was cut first followed by the, pulley and then the Av pulley. In 7 of 22 hands, it was a transverse structure parallel to the, pulley with a gap between the A1 and Av pulleys, referred to here as type I. In 9 hands, the A1 and Av pulleys were connected without any gap (type II). In 6 hands, the space between the A1 and Av pulleys were triangular in shape with fibers of the Av pulley converging toward the radial side (type III). In biomechanical study of both first and second experiments, there was no significant difference in MCP joint flexion between the all intact, A1 section, A1/Av section, A2 intact (A1/Av/oblique section), and no pulley configuration (p>.05). In occurring displacements less than 10 mm, there was no significant difference in IP joint flexion (p>.05). However, there was a significant decrease in IP joint flexion occurred in both 15 mm and 20 mm excursion (p<.05), when the oblique pulley was resected additionally after cutting the A1 and Av pulleys in first experiment, and when the A1 pulley was resected additionally after cutting the oblique pulley. According to the results, the injury of only the oblique pulley does not decrease thumb motion significantly. The oblique pulley injury with both the A1 and Av pulleys laceration decreased thumb motion significantly. The additional laceration of the A2 pulley does not decrease thumb motion.

  • PDF

Relationship between Leg Length Discrepancy and Radiological Parameters of Lumbosacrum and Pelvis in Patients with Chronic Low Back Pain (만성 요통 환자의 하지 길이 부전과 요천추부 및 골반의 방사선학적 지표와의 관계)

  • Cho, Yu-Jeong;Chung, Seok-Hee;Song, Mi-Yeon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.20 no.4
    • /
    • pp.171-183
    • /
    • 2010
  • Objectives : The biomechanical relationship of leg length discrepancy(LLD), Lumbar lordosis, pelvic variance and degenerative scoliosis is one of the most important parameters when treat musculoskeletal disorders, however the reports are still controversial. The purpose of this study was to compare the relationships between the parameters and bothersomeness in subject with chronic ow back pain. Methods : Sixty female and eight male adults with non specific low back pain over 3 months were recruited. LLD was measured by tape measure method. Lumbar lordosis, lumbosacral angle and related pelvic parameters were measured using simple radiologic films of lumbosacral view. Results : Lumbar lordosis was significantly correlated to the lumbosacral angle, pelvic incidence and difference of the both iliac widths. Pelvic incidence had significant correlation with difference of the both iliac widths. And difference of both iliac widths was related with LLD by radiologic film. There was also significant correlation between the LLD by radiologic film and tape measurement. Visual analogue scale(chronic low back pain) of normal lordosis group was greater than hyperlordosis group. Conclusions : There were close biomechanical relationships between lumbar, pelvis, and lower extremity. But in order to determine the effect of structure on the chronic low back pain, global balance of musculoskeletal structure seems to be worth further researching.

Effects for Running Shoes with Resilience of Midsole on Biomechanical Properties (미드솔의 반발탄성이 러닝화의 생체역학적 특성에 미치는 영향)

  • Yoo, Chan-Il;Won, Yonggwan;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.103-111
    • /
    • 2015
  • Objective : The purpose of this study was to evaluate the effect for running shoes with resilience of midsole on biomechanical properties. Methods : 10 healthy males who had no history of injury in the lower extremity with an average age of 26.5 year(SD=1.84), height of 172.22 cm(SD=4.44) and weight of 67.51 kg(SD=6.17) participated in this study. All subjects ran on the treadmill wearing three different running shoes. Foot pressure data was collected using Pedar-X system(Novel Gmbh, Germany) operating at 100 Hz. Surface EMG signals for biceps femoris, rectus femoris, vastus lateralis, medial lateralis, tibialis anterior, medial gastrocnemius, soleus and peroneus longus were acquired at 1000 Hz using Bignoli 8 System(Delsys Inc., USA). To normalize the difference of the magnitude of muscle contractions, it was expressed as a percentage relative to the maximum voluntary contraction (MVC). The impact resilience of the midsole data was collected using Fastcam SA5 system(Photron Inc., USA). Collected data was analyzed using One-way ANOVA in order to investigate the effects of each running shoes. Results : TPU midsole was significantly wider in contact area than EVA, TPE midsole in midfoot and higher in EMG activity than EVA midsole at biceps femoris. TPE midsole was significantly wider in contact area than EVA midsole in rearfoot and higher in peak pressure than EVA midsole in forefoot. EVA midsole was significantly higher in EMG activity than TPU midsole at tibia anterior. In medial resilience of midsoles, TPE midsole was significantly higher than EVA, TPU midsole. Conclusion : TPU midsole can reduce the load on the midfoot effectively and activate tibialis anterior, biceps femoris to give help to running.