• Title/Summary/Keyword: BIOMECHANICAL

Search Result 954, Processing Time 0.03 seconds

Double-Bundle Anterior Cruciate Ligament Reconstruction (이중 다발 전방십자인대 재건술)

  • Kim, Jae-Hwa;Kim, Jung Ryul
    • Journal of the Korean Arthroscopy Society
    • /
    • v.15 no.2
    • /
    • pp.132-139
    • /
    • 2011
  • The concept of double-bundle ACL reconstruction was introduced recently to restore the anatomical and biomechanical functions of the native ACL. According to anatomical and biomechanical studies, the separate reconstruction of anteromedial and posterolateral bundle expect to increase the overall postoperative stability and clinical results compared to single-bundle ACL reconstruction. But there is still a lack of available clinical outcome studies with sufficient follow-up to demonstrate the real advantages of double-bundle ACL reconstruction. The purpose of this article is to review the evidence to support double-bundle technique and to address controversies existing over the usefulness of this technique.

  • PDF

Biomechanical Effect on Knee Adduction Moment by Lateral Wedge Insole in Transfemoral Amputee (외측웨지인솔이 대퇴절단자의 무릎내전모멘트에 미치는 영향)

  • Chang, Yun-Hee;Lee, Wan-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.239-244
    • /
    • 2012
  • The prevalence of knee osteoarthritis was higher people with lower limb amputation. This was identified that transfemoral amputees have a greater external knee adduction moment than ablebodied subjects by biomechanical studies. Therefore, they need rehabilitative intervention for prevention and reduction of knee osteoarthritis. The purpose of this study was to determine the effect of lateral wedge insole used in the treatment of knee osteoarthritis. This study was participated in fourteen unilateral transfemoral amputees and we were analyzed the difference gait variables between without lateral wedge insole and with $5^{\circ}$ and $10^{\circ}$ lateral wedge insole during gait. Our results showed that step length ratio was more symmetrical and, hip adduction and ankle inversion angle were more close to normal value, and knee adduction moment was decreased as the wedge angle increases. We proposed that these data would be utilized conservative treatment of knee osteoarthritis in lower limb amputees.

The Biomechanical Evaluation of Functional Insoles (기능성 인솔유형들의 생체역학적 평가)

  • Kim, Eui-Hwan;Cho, Hyo-Kyu;Jung, Tae-Woon;Kim, Sung-Sup;Chung, Jae-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.345-353
    • /
    • 2010
  • The purpose of this study was to compare and biomechanical evaluate the effects of three varying functional insoles on the kinematics of the lower extremities and foot pressure distribution during gait. For this 12 subjects participated in this study and each worn the 3 functional insoles during gait which kinematics, kinetics, electromyography and foot pressures were recorded. The function on the first insole was to absorb shock and increase the dynamic stability, the second was a gel type to absorb shock, and the third was to massage the center regions of the foot sole. the results were as follows; the first insole reduced the joints range of motion and reduced muscular fatigue, the second insole reduce the maximum, total and average foot pressures. Finally, the third insole produced larger values for the contact times and contact area.

Biomechanical characteristics of the distal filling effects in cementless femoral stem (무시멘트형 대퇴스템에서 원위부 압박 정도에 따른 생체역학적 특성)

  • Park, Sang-eok;Park, Jae-Won;Chae, Soo-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.387-392
    • /
    • 2000
  • In cementless total hip replacement(THR), an initial stability of the femoral component is important to long term fixation of femoral stem. The initial stability has close relationship with the relative displacement of prosthesis and spongy bone at the proximal of femur. After implantation of the prosthesis. the surrounding bone is partially shielded from load carrying and starts to resort. Stress shielding is the cause of the loss of proximal bone. Assessing stress distribution of femur is important to predict stress shielding. The initial stability and the stress shielding were investigated for two loading conditions approximating a single leg stance and a stair climbing. Three types of stems were studied by the finite element method to analyze the biomechanical effects of distal filling of cementless femoral stems, Three types of stems employed are a distal filling stem, a distal flexible stem, and a distal tapered stem.

  • PDF

Biomechanical evaluation of menisectomy using finite element method (유한요소 해석법을 이용한 반월상 연골 절제술의 생체역학적 평가)

  • Bae, Ji-Yong;Park, Jin-Hong;Song, Eun-Kyoo;Park, Sang-Jin;Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1471-1472
    • /
    • 2008
  • To analyze biomechanical effects of various types of menisectomy in the knee joint, the contact area and pressure distribution of intact the knee joint and the operated by various menisectomies were studied by using finite element method their results are compared with each other. In this study, the femur, the tibia, the articular cartilage and the menisci were three dimensionally reconstructed using MR Images of healthy knee joint in full extension of 26 years old male. Also, three dimensional finite element model of the knee joint was constructed including the models of ligaments and tendons on the reconstructed three dimensional model. Bones were considered to be rigid, articular cartilage and menisci were considered as homogeneous, isotropic and linearly elastic materials and ligaments and tendons were modeled as hyperelastic materials. Based on the results, the effects of various types of menisectomy on the knee joints are clearly elucidated.

  • PDF

BIOMECHANICAL STUDY OF THE CALVARIAL DEFECTS AFTER IMPLANTATION OF THE TOOTHASH AND PLASTER IN THE RAT (백서에서 치아회분과 석고 매식 후 두개 결손부의 생물물리적 성질에 관한 실험적 연구)

  • Kim, Young-Kyun;Ko, Young-Mu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.19 no.1
    • /
    • pp.45-54
    • /
    • 1997
  • The purpose of this investigation was to determine the biomechanical property of calvarial defects reconstructed using toothash, plaster and tooth-plaster mixture. Full-thickness bony defects were made on the rat calvaria with size of $10mm{\times}10mm$. Group 1 was filled with toothash only, group 2 : toothash-plaster mixture, and group 3 : plaster only. The defects were allowed to heal for 12 and 20 weeks before killing the animals. Light microscopic examinations vas taken after 12 week after operation. The hardness was evaluated for test of mechanical property. The following results were obtained : 1. In light microscopic examination 12 week after operation, there were no inflammatory and foreign body reaction. Implanted particles were resorbed gradually or united directly with newly formed bone. 2. In hardness test, the hardness of newly formed bone was lower than that of normal bone and there was significant difference(P<0.01). The site of new bone formation has enough hardness to resist the mechanical stress. These results suggest that toothash and plaster are biocompatible and osteoconductive material.

  • PDF

Evaluation of the Biomechanical Characteristics of Ischemic Mitral Regurgitation: Effects of Asymmetric Papillary Muscle Displacement and Annular Dilation (허혈성 승모판막 폐쇄부전의 생체역학적 특성 분석: 비대칭적 유두근 변위와 판륜 확장의 영향)

  • Hong, Woojae;Kim, Hyunggun
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.31-37
    • /
    • 2018
  • Ischemic mitral regurgitation (IMR) is the primary mitral valve (MV) pathology in the aftermath of myocardial infarction as a consequence of regional left ventricular (LV) remodeling. We investigated the effect of asymmetric papillary muscle (PM) displacement and annular dilation on IMR development. Virtual MV modeling was performed to create a normal human MV. Asymmetric PM displacement, asymmetric annular dilation, and the combination of these two pathologic characteristics were modeled. Dynamic finite element evaluation of MV function was performed across the complete cardiac cycle for the normal and three different IMR MV models. While the normal MV demonstrated complete leaflet coaptation, each pathologic MV model clearly revealed deteriorated leaflet coaptation and abnormal stress distributions. The pathologic MV model having both asymmetric PM displacement and annular dilation showed the worst leaflet malcoaptation. Simulation-based biomechanical evaluation of post-ischemic LV remodeling provides an excellent tool to better understand the pathophysiologic mechanism of IMR development.

Effect of Landing Heights on Muscle Activities and Ground Reaction Force during Drop Landing in Healthy Adults (정상 성인에서 착지 시 착지 높이가 근활성도와 지면반발력에 미치는 영향)

  • Chang, Jong-Sung;Lee, Mi-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.2
    • /
    • pp.145-151
    • /
    • 2011
  • Purpose: The study was designed to investigate the effects of landing heights on muscle activities and ground reaction force during drop landing. Methods: Sixteen healthy adults were recruited along with their written informed consent. They performed a drop-landing task at the height of 20, 40, and 60cm. They completed three trials in each condition and biomechanical changes were measured. The data collected by each way of landing task and analyzed by One-way ANOVA. Ground reaction forces were measured by force flate, muscle activities measured by MP150 system. Results: There were significant differences in ground reaction forces, and significant increases in muscle activities of tibialis anterior, medial gastrocnemius and biceps femoris with landing heights. Conclusion: These findings revealed that heights of landing increases risk factors of body damage because of biomechanical mechanism and future studies should focus on prevention from damage of external conditions.

Surgical Management of a Mandible Subcondylar Fracture

  • Kang, Dong Hee
    • Archives of Plastic Surgery
    • /
    • v.39 no.4
    • /
    • pp.284-290
    • /
    • 2012
  • Open reduction and anatomic reduction can create better function for the temporomandibular joint, compared with closed treatment in mandible fracture surgery. Therefore, the double miniplate fixation technique via mini-retromandibular incision was used in order to make the most stable fixation when performing subcondylar fracture surgery. Those approaches provide good visualization of the subcondyle from the posterior edge of the ramus, allow the surgeon to work perpendicularly to the fracture, and enable direct fracture management. Understanding the biomechanical load in the fixation of subcondylar fractures is also necessary in order to optimize fixation methods. Therefore, we measured the biomechanical loads of four different plate fixation techniques in the experimental model regarding mandibular subcondylar fractures. It was found that the loads measured in the two-plate fixation group with one dynamic compression plate (DCP) and one adaption plate showed the highest deformation and failure loads among the four fixation groups. The loads measured in the one DCP plate fixation group showed higher deformation and failure loads than the loads measured in the two adaption plate fixation group. Therefore, we conclude that the selection of the high profile plate (DCP) is also important in order to create a stable load in the subcondylar fracture.

A Study of Biomechanical Simulation Model for Spinal Fusion using Spinal Fixation System (척추경 고정 나사 시스템을 이용한 척추 유합 시술의 생체역학적 분석 모델 연구)

  • Kim, Sung-Min;Yang, In-Chul;Kang, Ho-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • In general, spinal fusion surgery takes pressure off the pain induced nerves, by restoring the alignment of the spine. Therefore spinal fixation system is used to maintain the alignment of spine. In this study, a biomechanical study was performed comparing the SROM(Spinal Range Of Motion) of three types of system such as Rigid, Dynesys, and Fused system to analyze the behavior of spinal fixation system inserted in vertebra. Dynesys system, a flexible posterior stabilization system that provides an alternative to fusion, is designed to preserve inter-segmental kinematics and alleviate loading at the facet joints. In this study, SROM of inter-vertebra with spinal fixation system installed in the virtual vertebra from L4 to S1 is estimated. To compare with spinal fixation system, a simulation was performed by BRG. LifeMOD 2005.5.0 was used to create the human virtual model of spinal fixation system. Through this, each SROM of flexion, extension, lateral bending, and axial rotation of human virtual model was measured. The result demonstrates that the movement of Dynesys system was similar to normal condition through allowing the movement of lumbar.