• Title/Summary/Keyword: BIOACOUSTIC

Search Result 8, Processing Time 0.029 seconds

A Comparison of Bioacoustic Recording and Field Survey as Bird Survey Methods - In Dongbaek-dongsan and 1100-altitude Wetland of Jeju Island - (조류 조사 방법으로써 생물음향 녹음과 현장 조사의 비교 - 제주 동백동산과 1100고지 습지를 대상으로 -)

  • Se-Jun Choi;Kyong-Seok Ki
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.5
    • /
    • pp.327-336
    • /
    • 2023
  • This study aimed to propose an effective method for surveying wild birds by comparing the results of bioacoustic detection with those obtained through a field survey. The study sites were located at Dongbaek-dongsan and a 1100-altitude wetland in Jeju-do, South Korea. The bioacoustic detection was conducted over the course of 12 months in 2020. For the bioacoustic detection, a Song-meter SM4 device was installed at each study site, recording bird songs in 1-min per hour, .wav, and 44,100 Hz format. The findings of the field survey were taken from the 「Long-term trends of Bird Community at Dongbaekdongsan and 1100-Highland Wetland of Jeju Island, South Korea.」 by Banjade et al. (2019). The results of this study are as follows. First, the avifauna identified using bioacoustic detection comprised 29 families and 46 species in Dongbaek-dongsan, and 16 families and 25 species in the 1100-altitude wetland. Second, based on the song frequency, the dominant species in Dongbaek-dongsan were Hypsipetes amaurotis (Brown-eared Bulbul, 33.62%), Horornis diphone (Japanese Bush Warbler, 12.13%), and Zosterops japonicus (Warbling White-eye, 9.77%). In the 1100-altitude wetland the dominant species were Corvus macrorhynchos (Large-billed Crow, 27.34%), H. diphone (19.43%), and H. amaurotis (16.56%). Third, in the field survey conducted at Dongbaek-dongsan, the number of detected bird species was 39 in 2009, 51 in 2012, 35 in 2015, and 45 in 2018, while the bioacoustic detection identified 46 species. In the field survey conducted in the 1100-altitude wetland, the number of detected bird species was 37 in 2009, 42 in 2012, 34 in 2015, and 38 in 2018, while the bioacoustics detection identified 25 species. Overall, 43.6% of the 78 species detected in the field survey in Dongbaek-dongsan (34 species) were identified using bioacoustic detection, and 38.3% of the 47 species detected in the field survey in the 1100-altitude wetland (18 species) were identified using bioacoustic detection. Fourth, the bioacoustic detection identified 9 families and 12 species of birds in Dongbaek-dongsan, and 3 families and 7 species of birds in the 1100-altitude wetland. No results from field survey were available for these species. The identified birds were predominantly nocturnal, including Otus sunia (Oriental Scops Owl) and Ninox japonica (Northern Boobook), passage migrants, including Larvivora cyane (Siberian Blue Robin), L. sibilans (Rufous-tailed Robin), and winter visitors with a relatively small number of visiting individuals, such as Bombycilla garrulus (Bohemian Waxwing) and Loxia curvirostra (Red Crossbill). Fifth, the birds detected in the field survey but not through bioacoustic detection included 18 families and 48 species in Dongbaek-dongsan and 14 families and 27 species in the 1100-altitude wetland; the most representative families were Ardeidae, Accipitridae, and Muscicapidae. This study is significant as it provides essential data supporting the possibility of an effective survey combining bioacoustic detection with field studies, given the increasing use of bioacoustic devices in ornithological studies in South Korea.

Nocturnal Birds Detection and Ecological Characteristics through Bioacoustic Monitoring (생물음향 모니터링 기법을 이용한 야행성 조류 탐지 및 생태적 특성 분석)

  • Choi, Se-Jun;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.6
    • /
    • pp.636-644
    • /
    • 2019
  • The purpose of this study was to investigate the callings of nocturnal birds using bioacoustic recording technology to identify species and to analyze the ecological characteristics of each species. Three sites - Seoraksan National Park, National Institute of Ecology, and Mudeungsan National Park - were investigated. The investigation period was from the middle of April 2018 to early March 2019 for Seoraksan national park, from late February of 2018 to the middle of February 2019 for the National Institute of Ecology, and from the middle of February 2018 to the end of August 2018 for Mudeungsan National Park. The main research results are as follows. Firstly, nocturnal bird species identified by the survey included Caprimulgus indicus, Otus sunia, Zoothera aurea, Bubo bubo, and Strix uralensis, 5 species in total. Secondly, the breeding call period of each species was from early May to early August for C. indicus, from early April to the end of September for O. sunia, from early March to early October for Z. aurea, from late September to early February for B. bubo, and from mid-January to early March for S. uralensis. Thirdly, the mating call rhythm was between 16:00 and 10:00 on the following day for all the observed species in the three regions, and the peak time zone was from 20:00 to 06:00 on the following day. Fourthly, there was no correlation between the cumulative call frequency and the precipitation for each species. Fifthly, the mean temperature during the period when the specific calls of nocturnal birds were detected was -4.00 ℃ for S. uralensis, 2.58 ℃ for B. bubo, 13.66 ℃ for Z. aurea, 19.50 ℃ for O. sunia, and 20.77 ℃ for C. indicus. The ANOVA results showed that there was a significant difference in mean temperature for the calling by species and that the mean temperature was S. uralensis, B. bubo, Z. aurea, and O. sunia-C. indicus, in the ascending order, for 4 groups in total. The period of the specific mating calls confirmed by the study is a period in which the frequency of calls was the highest among the periods when the specific calls were detected. Since it is associated with the known mating period of each species, the period of the high frequency of calls confirmed by the bioacoustic monitoring can be regarded as the mating season. This study is meaningful in that it is the early research that has used the bioacoustic recording technology to identify species and ecological characteristics of species of nocturnal birds in Korea.

A Study on the Characteristic of Habitat and Mating Calls in Korean Auritibicen intermedius (Hemiptera: Cicadidae) Using Bioacoustic Detection Technique (생물음향탐지기법을 활용한 한국 참깽깽매미 서식 및 번식울음 특성 연구)

  • Yoon-Jae Kim;Kyong-Seok Ki
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.592-602
    • /
    • 2022
  • This study aimed to check habitat distribution and analyze influencing factors by analyzing the mating calls of Auritibicen intermedius inhabiting limited locations in South Korea by applying bioacoustic detection techniques. The study sites were 20 protection areas nationwide. The mating call analysis period was 4 years from 2017 to 2021, excluding 2020. The bioacoustic recording system installed at each study site collected recordings of mating calls every day for 1 minute per hour. Climate data received from the Meteorological Agency, such as temperature, humidity, rainfall, cloudiness, and sunshine, were analyzed. The results of this study identified A. intermedius habitat only in four national parks in the highlands of Gangwon Province (Mt. Seorak, Mt. Odae, Mt. Chiak, and Mt. Taebak) out of 20 study sites. During the four years of study, the mating call period of A. intermedius was between August 5 and September 28, and the duration of the mating call was 31 to 52 days. The temperature analysis during the appearance period of A. intermedius showed that A. intermedius mainly produced mating calls at temperatures between 13.1℃ and 35.3℃, and the average temperature during the circadian cycle of mating calls (09:00 to 16:00) was 24.4 to 24.9℃. The analysis of the circadian cycle of mating calls at four study sites where A. intermedius appeared in 2019 showed that A. intermedius produced mating calls from 06:00 to 16:00 and that they peaked around 11:00 to 12:00. During the appearance period of A. intermedius, four species appeared in common: Hyalessa maculaticollis, Meimuna opalifera, Graptopsaltria nigrofuscata, and Suisha coreana. A logistic regression analysis confirmed that sunlight was the environmental factor affecting the mating call of A. intermedius. Regarding interspecific influence, it was confirmed that A. intermedius exchanged interspecific influence with 4 other common species (H. maculaticollis, M. opalifera, G. nigrofuscata, and S. coreana). The above results confirmed that A. intermedius habitats were limited in the highlands of Gangwon Province highlands in Korea and produced mating calls at a lower temperature compared to other species. These results can be used as basic data for future research on A. intermedius in Korea.

Bioacoustic Change of Dybowski's Brown Frog by Highway Noise (고속도로 소음에 의한 북방산개구리의 생물음향학적 특성 변화 연구)

  • Ki, Kyong-Seok;Sung, Chan-Yong
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.3
    • /
    • pp.273-280
    • /
    • 2014
  • This study examined whether Dybowski's brown frogs(Rana dybowskii) in noisy highway roadsides had different mating calls from those in natural sites. We selected four study sites: two rice paddy sites in Youngdong Highway roadside and two nearby natural counterparts. Frog calls were recorded between 18:30 and 20:00 on February 24, February 27, and March 14, 2014. Frog calls in the natural sites had fundamental frequency approximately at 700 Hz with two to four apparent harmonics, while frog calls in the highway sites had higher fundamental frequency with up to seven apparent harmonics. Analysis of variance (ANOVA) shows that a roadside site that are directly exposed to highway noise had statistically higher frog calling frequency than other study sites. However, the higher calling frequency was not found in another roadside site that differed in elevation from the highway and was buffered by forests. These results indicate that male frogs in a noisy highway roadside called females with a higher pitch and more apparent harmonics to avoid being masked by highway noise. These results also suggest that there is a threshold noise level that interrupts frog's mating behavior and it is needed to maintain highway roadside noise to this threshold level.

Accuracy verification for unmanned aerial vehicle system for mapping of amphibians mating call (양서류 번식음 맵핑을 위한 무인비행장치 시스템의 정확성 검증)

  • Park, Min-Kyu;Bae, Seo-Hyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.85-92
    • /
    • 2022
  • The amphibian breeding habitat is confirmed by mating call. In some cases, the researcher directly identifies the amphibian individual, but in order to designate the habitat, it is necessary to map the mating call region of the amphibian population. Until now, it has been a popular methodology for researchers to hear mating calls and outline their breeding habitats. To improve this subjective methodology, we developed a technique for mapping mating call regions using Unmanned Aerial Vehicle (UAV). The technology uses a UAV, fitted with a sound recorder to record ground mating calls as it flies over an amphibian habitat. The core technology is to synchronize the recorded sound pressure with the flight log of the UAV and predict the sound pressure in a two-dimensional plane with probability density. For a demonstration study of this technology, artificial mating call was generated by a potable speaker on the ground and recorded by a UAV. Then, the recorded sound data was processed with an algorithm developed by us to map mating calls. As a result of the study, the correlation coefficient between the artificial mating call on the ground and the mating call map measured by the UAV was R=0.77. This correlation coefficient proves that our UAV recording system is sufficiently capable of detecting amphibian mating call regions.

Temporal Changes of Hyalessa fuscata Songs by Climate Change (기후변화에 의한 참매미 번식울음 시기 변화 연구)

  • Kim, Yoon-Jae;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.2
    • /
    • pp.244-251
    • /
    • 2018
  • The present study aimed to identify the influence of climate change on mating songs of Cicadidae in a phenological perspective. The research sites were located in the central part of the Korean peninsula in which phenological observations by the Meteorological Office are made. The material provided by the Meteorological Office was used for long term phenological analysis. The findings demonstrated, First, the phenological monitoring of cicada is an effective index to detect ecological changes due to climate change, thus indicating the importance of long term phenological investigations for future studies. Second, the analysis on the phenological changes of H. fuscata presented a trend in which the first songs were made at increasingly earlier and later dates, respectively. The phenological data on H. fuscata and average temperatures exhibited a significant negative correlation between the initial mating song period and the average temperatures of June. Furthermore, there was also a significant negative correlation for precipitation in October with the end time and total duration of H. fuscata song. Third, in the regression analysis of the start of H. fuscata song and meteorological factors in Seoul, increasing average air temperature in spring (March to June), which includes June, was associated with an earlier start time of H. fuscata song, with calling starting approximately 3.0-4.5 days earlier per $1^{\circ}C$ increase. Fourth, in the regression analysis of the end of H. fuscata song and meteorological factors in Seoul, increased mean precipitation in October was associated with an early end time and an overall reduction in the length of the song period. The end time of song decreased by approximately 0.78 days per 1mm increase in precipitation, and the total length of the song period decreased by 0.8 days/1mm. This research is important, as it is the initial research to identify the phenological changes in H. fuscata due to climate change.

A Study on the Nationwide Song Distribution and Phenological Characteristics of Fairy Pitta Pitta Nympha, an Endangered Species (멸종위기종 팔색조 전국 번식울음 분포 및 생물계절 특성 연구)

  • Choi, Se-Jun;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.2
    • /
    • pp.139-149
    • /
    • 2022
  • This study aimed to prepare basic data for protecting the habitat of Fairy Pitta Pitta nympha and coping with climate change by detecting songs with bio-acoustic recording technology and identifying phenological characteristics in protected areas in Korea. The study sites were 36 protected areas nationwide. Data were collected between January and December 2019, and the analysis period was from May 1 to August 31, 2019. The main results are described as follows. Firstly, songs were detected in 22 out of 36 study sites. Frequency analysis results of songs show that high frequency was observed in southern inland, including Jeju island, and the area with the highest latitude was Seoraksan National Park. Secondly, the first song was observed in Hallyeohaesang National Park Geumsan on May 14, 2019, and the last song was observed in Ungok wetland in Gochang on August 6, 2019. Thirdly, circadian rhythm analysis results of songs show that the frequency rapidly increased at five o'clock in the morning, peaked at six o'clock, and then decreased afterward. Fourthly, seasonal cycle analysis results of songs show that they were observed from May 14, 2019 to August 6, and the day with the highest accumulated frequency of songs was June 3, 2019 (Julian date: 154). The average temperature of the day the songs were detected was 17.4℃, the average precipitation was 0.02mm, and the average humidity was 82.6%. Fifthly, a correlation analysis result between Fairy Pitta's songs and meteorological factors shows that temperature indicated a negative correlation with Fairy Pitta's songs (p<0.001), but precipitation (p=0.053) and humidity (p=0.077) did not indicate a statistical significance (df=471). This study is significant in that it confirmed the distribution of Fairy Pitta's songs using bio-acoustic recording technology in protected areas nationwide and identified their ecological characteristics by precisely analyzing the relationship between the song period and meteorological factors.

A Study on the Emergence Period and Geographic Distribution of Cicadinae (Hemiptera: Cicadidae) in Korea Using Bioacoustic Detection Technique (생물음향 탐지기법을 이용한 한국 매미아과의 출현 시기 및 서식지 분포 특성 연구)

  • Kim, Yoon-Jae;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.594-600
    • /
    • 2021
  • The purpose of this study is to observe the period of mating calls of cicadas in South Korea to identify the emergence period and geographic distribution for each cicada species. The study sites were 19 protection areas nationwide. The mating calls of cicadas were collected over the 12 months of 2019. A bioacoustics measuring device was installed to record the mating calls of cicadas in WAV, 44,100Hz format for 1 minute every hour. The temperature was recorded once or twice every hour using a micro-meteorological measuring device. Nine species of Korean cicadinae were studied. The start and end periods of mating calls were recorded for each cicada species for the subsequent analysis. The analysis results showed that nine cicada species appeared in the 19 protection areas. The chronological order of mating call periods for each species was as follows: Cryptotympana atrata (7/12 - 9/30), Meimuna opalifera (7/27 - 10/20), Hyalessa fuscata (7/25 - 10/9), Graptopsaltria nigrofuscata (7/28 - 9/5), Platypleura kaempferi (7/3 - 9/29), Suisha coreana (9/14 - 10/30), Leptosemia takanonis (6/26 - 8/2), Auritibicen intermedius (7/27 - 9/28), and Meimuna mongolica (8/8 - 9/11). The mating call period was between 35 (Meimuna mongolica) and 89 (Platypleura kaempferi) days, with the average being 62 days. The elevation above sea level for the habitats of each species was as follows: 5 - 386 m for Cryptotympana atrata, 7 - 759 m for Meimuna opalifera, 7 - 967 m for Hyalessa fuscata, 42 - 700m for Graptopsaltria nigrofuscata, 7 - 700 m for Platypleura kaempferi, 5 - 759 m for Suisha coreana, 7 - 759 m for Leptosemia takanonis, 397 - 967 m for Auritibicen intermedius, and 7 - 42 m for Meimuna mongolica. The average temperature of the habitats of each species was as follows: 23.9℃ for Cryptotympana atrata, 21.8℃ for Meimuna opalifera, 22℃ for Hyalessa fuscata, 23℃ for Graptopsaltria nigrofuscata, 22.9℃ for Platypleura kaempferi, 14.6℃ for Suisha coreana, 20.6℃ for Leptosemia takanonis, 19.3℃ for Auritibicen intermedius, and 24.4℃ for Meimuna mongolica. In terms of the habitat distribution of species, Meimuna opalifera, Hyalessa fuscata, and Platypleura kaempferi were distributed in more than 15 protection sites. Cryptotympana atrata was distributed in the lowlands in the southwest. Graptopsaltria nigrofuscata was distributed in the western area of the Korean Peninsula. Suisha coreana was distributed in areas excluding high mountain areas and parts of the southeast area. Leptosemia takanonis was distributed in areas near the mountains. Auritibicen intermedius was distributed locally in the high mountain areas. Meimuna mongolica was distributed locally in flat wetlands.