• Title/Summary/Keyword: BINGHAM FLOW

Search Result 83, Processing Time 0.025 seconds

Dynamic Characteristics of ER Mounts with different operation modes (작동모드에 따른 ER마운트의 동특성 해석)

  • 홍성룡;최승복;정우진;함일배;김두기
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.819-829
    • /
    • 2000
  • Dynamic Characteristics of two different types of ER(electro-rheological)mounts ; flow and shear mode types are analyzed and compared. As a first step, field-dependent Bingham models of a chemically treated starch/silicone oil-based ER fluid are empirically identified under both flow and shear mode conditions. The models are them incorporated to the governing equation of the corresponding mode ER mount. For the reasonable comparison between two ER mounts, electrode parameters such as electrode gap are designed to be same. Dynamic stiffness and displacement transmissibility of each ER mount are evaluated in frequency domain with respect to the intensity of electric filed. In addition, vibration control capability of each ER mount is investigated in both frequency and time domains by employing the skyhook controller.

  • PDF

Characteristic Experiment of a Hydraulic Control Valve by Using Electro-Rheological Fluid (ERF를 이용한 유압제어밸브의 특성실험)

  • Kim, Dong-Su;Park, Jae-Beom;Jang, Seong-Cheol
    • 연구논문집
    • /
    • s.30
    • /
    • pp.93-99
    • /
    • 2000
  • Electro-Rheological(ER) fluids change their apparent viscosity according to the electric field strength. The electrical and rheological properties of zeolite based the ER fluids were reported. The electric field dependent yield stress are obtained from experimental investigation on the Bingham property of the ER fluid. Using ER fluids, it is possible to directly interface between electric drop and flow rate of the ER fluid was hydraulic control valve measured under application of an electric field. The purpose of the present study is pressure drop measurement of an ER valve by using strain gage. The performance characteristics of the valve system are evalusted in terms of pressrue fixed with respect to the intensity of employed electric fields and flow rates. As a result, it is esperimentally confirmed that pressure control valve using ER fluids applicable to use in hydraulic power systems.

  • PDF

Analysis of ground reinforcement effect using fracturing grouting (침투 및 할렬주입에 의한 지반보강 효과에 관한 연구)

  • Lee, J.S.;Lee, I.M.;Chung, H.S.;Lee, D.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.349-360
    • /
    • 2003
  • A practical modeling approach has been proposed in this study to better understand the behavior of penetration grouting which is normally applied to the jointed rock masses to increase the bearing capacity and to reduce the ground water flow into the tunnel. Based on Bingham model together with a steady-state flow of the grout, penetration model is simulated in the commercial package called UDEC and, injection pressure as well as joint thickness are found to be the main parameters to determine the range of grout spread. Another numerical model on fracturing grouting is also suggested and, in this case, the tensile strength as well as cohesion of the rock masses are proven to be the major factors to decide the fracturing mechanism of the rock masses. The reinforcement effect of the grout-reinforced rock masses is calculated from the suggested algorithm on orthotropic material model and it is found that the directional stiffness of reinforced rock masses is increased up to 3 to 4 times compared with original jointed rock masses. Future work will be concentrated on the water control around the tunnel by the grout injection and a model test will also be performed to verify the suggested methods developed in this study.

  • PDF

Phenomenological Damping Flow Modeling and Performance Evaluation for a Continuous Damping Control Damper Using MR Fluid (MR 유체를 이용한 연속 감쇠력 가변형 댐퍼를 위한 감쇠유동의 현상학적 모델링과 성능평가)

  • Park, Jae-Woo;Jung, Young-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.73-82
    • /
    • 2008
  • Recently MR CDC damper has been applied to semi-active suspension control system gradually. Compared to former hydraulic CDC damper, it has rapid time response performance as well as simple internal structure and wide range of damping force. In order to develop control logic algorithm which enables to take maximum advantage of unique characteristics of MR CDC damper, it is inevitable to perform a thorough investigation into its nonlinear performance. In many previous researches, MR fluid model was either simply assumed as Bingham Plastic, or a phenomenological model based on experiment was established instead to predict damping performance of MR CDC damper. These experimental flow model which is not based on flow analysis but intentionally built to fit damping characteristics, may lead to totally different results in case of different configuration or structure of MR CDC damper. In this study, a generalized flow formula from mathematical flow model of MR fluid for annular orifice is derived to analyze and predict damping characteristics when current is excited at piston valve.

Relations between rheological and mechanical properties of fiber reinforced mortar

  • Cao, Mingli;Li, Li;Xu, Ling
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.449-459
    • /
    • 2017
  • Fresh and hardened behaviors of a new hybrid fiber (steel fiber, polyvinyl alcohol fiber and calcium carbonate whisker) reinforced cementitious composites (HyFRCC) with admixtures (fly ash, silica fume and water reducer) have been studied. Within the limitations of the equipment and testing program, it is illustrated that the rheological properties of the new HyFRCC conform to the modified Bingham model. The relations between flow spread and yield stress as well as flow rate and plastic viscosity both conform well with negative exponent correlation, justifying that slump flow and flow rate test can be applied to replace the other two as simple rheology measurement and control method in jobsite. In addition, for the new HyFRCC with fly ash and water reducer, the mathematical model between the rheological and mechanical properties conform well with the quadratic function, and these quadratic function curves are always concave upward. Based on mathematical analysis, an optimal range of rheology/ flowability can be identified to achieve ideal mechanical properties. In addition, this optimization method can be extended to PVA fiber reinforced cement-based composites.

Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won;Kim Yong-Seok;Chang Gap-Shik
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.129-138
    • /
    • 2006
  • Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.

Penetration of Compacted Bentonite into the Discontinuity in the Excavation Damaged Zone of Deposition Hole in the Geological Repository (심층처분장 처분공 주변 굴착손상영역에 존재하는 불연속면으로의 압축 벤토나이트 침투)

  • Lee, Changsoo;Cho, Won-Jin;Kim, Jin-Seop;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.193-213
    • /
    • 2020
  • A mathematical model to simulate more realistically the penetration of compacted bentonite buffer installed in the deposition hole into the discontinuity in the excavation damaged zone formed at the inner wall of the deposition hole in the geological repository for spent fuel is developed. In this model, the penetration of compacted bentonite is assumed to be the flow of Bingham fluid through the parallel planar rock fracture. The penetration of compacted bentonite is analyzed using the developed model. The results show that the maximum penetration depth of compacted bentonite into the rock fracture is proportioned to the swelling pressure of saturated compacted bentonite and the aperture of rock fracture. However, it is in inverse proportion to the yield strength of compacted bentonite. The viscosity of compacted bentonite dominates the penetration rate of compacted bentonite, but has no influence to the maximum penetration depth.

Experimental Study on Rheological Properties of Alkali Activated Slag Pastes with Water to Binder Ratio (물 결합재 비에 따른 알칼리 활성 슬래그 페이스트의 레올로지 특성에 관한 실험적 연구)

  • Kim, Byeong-Jo;Song, Jin-Kyu;Song, Keum-Il;Oh, Myeong-Hyeon;Lee, Bang-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.511-519
    • /
    • 2015
  • Methods such table flow, slump and outflow time have used to be as a main evaluation criteria regards to fluidity of concrete. Since those methods mentioned above have some inaccuracies which are up to its condition of test. Studies that evaluate fluidity applying the rheology has increased its portion in this field. Meanwhile, demands for AAS binder have been increased in accordance with its demand for this market, studies for rheology of AAS binder are little though. Therefore, this paper mainly deals a rheological peculiarity of AAS binder according to its condition of W/B ratio and alkali activators. The fluidity of AAS paste was evaluated with the index of table flow and outflow time. And shear stress following its shear rate was analyzed through rheological test. Rheological parameters were deduced through this rheological test of Bingham model and analyzed its interrelation with fluidity test. As the final outcome, it proposed the interrelation among table flow, yield stress, viscosity and outflow time. In basis of this study, we would like to suggest a reference for mixing AAS mortars and concretes.

The Flow Behavior of Skin Collagen (피부조직 콜라겐의 유동 특성)

  • Kim, Young-Ho;Park, Eun-Ji;Yang, Ryung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.576-581
    • /
    • 1995
  • To obtain the basic information for the effective use of collagen, the flow behavior of collagen extracted from skin tissue was studied. The viscosity of collagen varied with sex, age and the kinds of collagen by extraction method. Regardless of the kinds of collagen, the viscosity of collagen extracted from $6{\sim}12$ week old rat was relatively high. In case of the same age, the viscosity showed higher in female than in male rat and in acid soluble collagen than in insoluble collagen. The solution of the collagen showed the characteristics of Bingham plastic and thixotropic fluid, and the viscosity varied distinctly with temperature, pH, ethanol concentration and collagen concentration. As collagen concentration increased to 6%, the consistency of acid soluble- and insoluble collagen showed a tendency to increase linearly(r = 0.972 for acid soluble collagen, r = 0.957 for insoluble collagen). In that range of collagen concentration, the increasing velocity of consistency was higher in acid soluble collagen than in insoluble collagen. The consistency of collagen solution was decreased according to temperature rising. In case of acid soluble collagen, the consistency is decreased abruptly between $30{\sim}40^{\circ}C$. According to pH variation, the consistency of acid soluble collagen showed biphasic phenomenon, though the consistency of insoluble collagen was found not to be influenced by pH. The consistency of acid soluble- and insoluble collagen according to ethanol concentration showed high between $40{\sim}60%$ of ethanol concentration.

  • PDF

A Numerical Study on the Flow Characteristics of Grouts in Jointed Rock (절리암반에서의 주입재 유동특성에 관한 수치해석적 연구)

  • 김문상;문현구
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.123-138
    • /
    • 1995
  • To study the grout flow in jointed rock, various nurser characteristics of grout in a single joint plane and two-dperorbed. The joint plane is described as a channel nets properties of grout are considered. To deal with various prob generator and i oint network generator are used. A loss of head due to friction in laminal flow is adopted to between the grout and joint wall. The grout flow is stopped, setting time. To consider this phenomenon, the idea of maxim From the results of numerical simulation on the single jai etration of grout is confirmed. The basic principles for the ation and the selection of the grout are presented. Correlation ant and grouting pressure is defined by analyzing the effects grout flow. Finally, the grout flow around a tunnel is simulate ins grouting operation for jointed rock mass.

  • PDF