• Title/Summary/Keyword: BIG DATA

Search Result 6,281, Processing Time 0.036 seconds

A Study on Curriculum Development for Big Data Driven Digital Marketer (빅데이터 기반 디지털 마케터 전문가 양성을 위한 교육과정 개발 관련 연구)

  • Yi, Myongho
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.105-115
    • /
    • 2021
  • Many services are provided through big data analysis in various fields such as individuals, private sectors, and governments. There is a growing interest in training data scientists to provide these services. Particularly, interest in big data-based marketing curriculum is high. This study analyzed the domestic and foreign university big data-based marketing-related curriculum to utilize vast and diverse types of information from a marketing perspective in the era of big data. As a result of the analysis of 3,523 subjects related to digital marketing, big data marketing, data analysis, and developers collected according to the analysis criteria, it was analyzed that the specialized curriculum for training data scientists required in the era of the fourth industrial revolution was not appropriate. It is expected that the proposed curriculum in this study will be useful for the development of digital marketing and big data-based marketing curriculum.

Activation of Health Care Big Data (헬스케어 분야에서의 빅데이터 활용 활성화 방안)

  • Moon, Ja-hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.483-486
    • /
    • 2021
  • With the explosive increase in data, the 'big data era' has arrived, focusing on deriving new values and insights through data. With the development of data analysis technology, the importance of data analysis and utilization in the field of diagnosis and treatment as well as prevention is expanding, while the use of big data is emerging in the healthcare field. Moreover, as the three data-related laws (Personal Information Protection Act, Information and Communication Network Act, and Credit Information Act) were passed in January 2020, it became possible to use a wide range of big data through pseudonym information. However, the use of healthcare big data is still struggling due to various policies and regulations, inconsistent data quality, and the absence of specialized personnel. Therefore, in this study, examines the current state of use of big data in the healthcare field, and analyzes the challenges, overseas cases, plans, and expected effects for activation of healthcare big data.

  • PDF

Big Data Astronomy : Let's "PySpark" the Universe (빅데이터 천문학 : PySpark를 이용한 천문자료 분석)

  • Hong, Sungryong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2018
  • The modern large-scale surveys and state-of-the-art cosmological simulations produce various kinds of big data composed of millions and billions of galaxies. Inevitably, we need to adopt modern Big Data platforms to properly handle such large-scale data sets. In my talk, I will briefly introduce the de facto standard of modern Big Data platform, Apache Spark, and present some examples to demonstrate how Apache Spark can be utilized for solving data-driven astronomical problems.

  • PDF

The Current Situation of the Big Data Utilization in the Agricultural Food Area and its Future Direction

  • Chung, Daniel Byungho;Cho, Jongpyo;Moon, Junghoon
    • Agribusiness and Information Management
    • /
    • v.5 no.2
    • /
    • pp.17-26
    • /
    • 2013
  • The purpose of this study is to prove that new values for the agricultural food area can be created by combining various big data collected in the agricultural food area and analyzing them in an appropriate analysis method. For this, the analysis techniques generally used were studied, and the use of the big data in the various areas of the current society was explored through practical application instances. In addition, by the current status and analysis instances of the big data use in the agricultural food area, this study was conducted to verify how the new values found were being used.

Integration of Cloud and Big Data Analytics for Future Smart Cities

  • Kang, Jungho;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1259-1264
    • /
    • 2019
  • Nowadays, cloud computing and big data analytics are at the center of many industries' concerns to take advantage of the potential benefits of building future smart cities. The integration of cloud computing and big data analytics is the main reason for massive adoption in many organizations, avoiding the potential complexities of on-premise big data systems. With these two technologies, the manufacturing industry, healthcare system, education, academe, etc. are developing rapidly, and they will offer various benefits to expand their domains. In this issue, we present a summary of 18 high-quality accepted articles following a rigorous review process in the field of cloud computing and big data analytics.

Adaptive Boundary Correction based Particle Swarm Optimization for Activity Recognition (사용자 행동인식을 위한 적응적 경계 보정기반 Particle Swarm Optimization 알고리즘)

  • Heo, Seonguk;Kwon, Yongjin;Kang, Kyuchang;Bae, Changseok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1166-1169
    • /
    • 2012
  • 본 논문은 사용자 행동인식을 위해 기존 PSO (Particle Swarm Optimization) 알고리즘의 경계선을 통한 데이터 분류에서 데이터의 수집환경에 의해 발생하는 문제를 벡터의 길이비교를 이용한 보정을 통해 보완한 알고리즘을 제안한다. 기존의 PSO 알고리즘은 데이터 분류를 위해서 데이터의 최소, 최대값을 이용하여 경계를 생성하고, 이를 이용하여 데이터를 분류하였다. 그러나 PSO를 이용하여 행동인식을 할 때 행동이 수집되는 환경에 따라서 경계에 포함되지 못해 행동이 분류되지 못하는 문제가 있다. 이러한 분류의 문제를 보완하기 위해 경계를 벗어난 데이터와 각 행동을 대표하는 데이터의 벡터 길이를 계산하고 최소길이를 비교하여 분류한다. 실험결과, 기존 PSO 방법에 비해 개선된 방법이 평균적으로 앉기 1%, 걷기 7%, 서기 7%의 개선된 결과를 얻었다.

Enhanced and applicable algorithm for Big-Data by Combining Sparse Auto-Encoder and Load-Balancing, ProGReGA-KF

  • Kim, Hyunah;Kim, Chayoung
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.218-223
    • /
    • 2021
  • Pervasive enhancement and required enforcement of the Internet of Things (IoTs) in a distributed massively multiplayer online architecture have effected in massive growth of Big-Data in terms of server over-load. There have been some previous works to overcome the overloading of server works. However, there are lack of considered methods, which is commonly applicable. Therefore, we propose a combing Sparse Auto-Encoder and Load-Balancing, which is ProGReGA for Big-Data of server loads. In the process of Sparse Auto-Encoder, when it comes to selection of the feature-pattern, the less relevant feature-pattern could be eliminated from Big-Data. In relation to Load-Balancing, the alleviated degradation of ProGReGA can take advantage of the less redundant feature-pattern. That means the most relevant of Big-Data representation can work. In the performance evaluation, we can find that the proposed method have become more approachable and stable.

Optimization Driven MapReduce Framework for Indexing and Retrieval of Big Data

  • Abdalla, Hemn Barzan;Ahmed, Awder Mohammed;Al Sibahee, Mustafa A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1886-1908
    • /
    • 2020
  • With the technical advances, the amount of big data is increasing day-by-day such that the traditional software tools face a burden in handling them. Additionally, the presence of the imbalance data in big data is a massive concern to the research industry. In order to assure the effective management of big data and to deal with the imbalanced data, this paper proposes a new indexing algorithm for retrieving big data in the MapReduce framework. In mappers, the data clustering is done based on the Sparse Fuzzy-c-means (Sparse FCM) algorithm. The reducer combines the clusters generated by the mapper and again performs data clustering with the Sparse FCM algorithm. The two-level query matching is performed for determining the requested data. The first level query matching is performed for determining the cluster, and the second level query matching is done for accessing the requested data. The ranking of data is performed using the proposed Monarch chaotic whale optimization algorithm (M-CWOA), which is designed by combining Monarch butterfly optimization (MBO) [22] and chaotic whale optimization algorithm (CWOA) [21]. Here, the Parametric Enabled-Similarity Measure (PESM) is adapted for matching the similarities between two datasets. The proposed M-CWOA outperformed other methods with maximal precision of 0.9237, recall of 0.9371, F1-score of 0.9223, respectively.

A Study on Big Data Visualization Strategy Based on Social Communication:Focusing on User Experience (UX) based on Big Data Visualization Types (소셜 커뮤니케이션에 기반한 빅데이터의 시각화(Big Data Visualization) 전략에 관한 연구:빅데이터 시각화 유형에 따른 사용자 경험(UX)을 중심으로)

  • Choo, Jin-Ki
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.1
    • /
    • pp.142-151
    • /
    • 2020
  • The reason why today's public actively uses social communication is that the necessary information is collected and classified under the name of social big data through the web space to create the big data era, an ecosystem of information. In order for big data information to be used by the public, it is necessary to visualize it easily. This study categorized the types of visualization according to the information of social big data, and targeted the experienced students including the related majors and the general public who need to directly utilize and study the actual big data visualization as an experience evaluation target. As a result of analyzing the experiences of the experienced people, important implications for the visualization method for managing, analyzing, and utilizing the data were derived. The big data visualization strategy is to be expressed in a way that fits the data environment and user's eye level on SNS. In the future, if big data visualization is applied to product service or social trend, it will be an important data in terms of broadening its role, scope of application, and application.

A study on the Effect of Big Data Quality on Corporate Management Performance (빅데이터 품질이 기업의 경영성과에 미치는 영향에 관한 연구)

  • Lee, Choong-Hyong;Kim, YoungJun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.245-256
    • /
    • 2021
  • The Fourth Industrial Revolution brought the quantitative value of data across the industry and entered the era of 'Big Data'. This is due to both the rapid development of information & communication technology and the diversity & complexity of customer purchasing tendencies. An enterprise's core competence in the Big Data Era is to analyze and utilize the data to make strategic decisions for enterprise. However, most of traditional studies on Big Data have focused on technical issues and future potential values. In addition, these studies lacked interest in managing the quality and utilization levels of internal & external customer Big Data held by the entity. To overcome these shortages, this study attempted to derive influential factors by recognizing the quality management information systems and quality management of the internal & external Big Data. First of all, we conducted a survey of 204 executives & employees to determine whether Big Data quality management, Big Data utilization, and level management have a significant impact on corporate work efficiency & corporate management performance. For the study for this purpose, hypotheses were established, and their verifications were carried out. As a result of these studies, we found that the reasons that significantly affect corporate management performance are support from the management class, individual innovation, changes in the management environment, Big Data quality utilization metrics, and Big Data governance system.