• Title/Summary/Keyword: BICM-OFDM

Search Result 11, Processing Time 0.041 seconds

Adaptive Bit-loading Technique for BICM-OFDM Systems (BICM-OFDM 시스템을 위한 적응 비트 할당 기법)

  • Park, Dong-Chan;Kim, Suk-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.624-632
    • /
    • 2005
  • We consider an adaptive bit-loading technique for bit interleaved coded modulation-orthogonal frequency division multiplexing(BICM-OFDM) systems. By adjusting transmission parameter of each subcarrier adaptively depending on the subchannel state, the performance of OFDM system can be improved dramatically. In this paper, the number of bits for each subcarrier is allocated to minimize bit error rate keeping the constant throughput for the adaptive transmission technique of BICM-OFDM system which can be applied to real time transmission. Also, We use the discrete Lagrange multiplier method to get the optimum solution under the integer bit allocation constraint. Simulation results show that computational amount of the proposed bit allocation technique is not high and BICM-OfDM system using the proposed technique can get the SNR gain by 2$\~$3 dB over nonadaptive one.

Frequency Diversity of BICM-OFDM with Extended Interleaving (확장된 인터리빙을 사용하는 BICM-OFDM의 주파수 다이버시티)

  • Choi, Min-Cheol;Kim, Chang-Joong;Lee, Ho-Kyoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.102-108
    • /
    • 2010
  • In this paper, we analyse the frequency diversity of BICM-OFDM with extended interleaving. The extended interleaving is an interleaving which is added to the existing BICM-OFDM system to extends the interleaving depth by times to the previous interleaving depth. Using the extended interleaving, the diversity order of the proposed system over -tap frequency selective channels is increased from min($d_{free}$, L) to min($d_{free}$, KL), where $d_{free}$ is minimum Hamming distance of the convolutional code. Simulation is also performed to show that the performance of the proposed system is better than that of the existing system even if the channel is an on-off channel in which the number of multi-paths is varying.

Performance Analysis of Symbol Mapping Diversity in Coded MIMO-OFDM Systems over Fading Channels (페이딩 채널에서 부호화된 MIMO-OFDM 시스템의 심볼맵핑 다이버시티 성능 분석)

  • Park, Won-Seok;Kang, Jin-Whan;Kim, Sang-Hyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.386-393
    • /
    • 2010
  • In this paper, we analyse HARQ scheme that utilizes symbol mapping diversity (SMD) techniques such as MDSM and CORE. The exploitation feasibility of MDSM and CORE is evaluated in the perspective of system complexity and storage capacity as we consider a BICM system based on 3GPP LTE standards and multipath fading channels. Also, a simple method which obtains SMD effects by circularly shifting bit-block in a codeword is proposed. The experimental results performed in BICM-OFDM systems with single antenna as well as multiple antennas show that frame error rate of the proposed method is close to that of CORE while having lower complexity.

Performance Evaluation of DVB-C2 - The Standard for Next Generation Digital Cable Broadcasting (차세대 유럽형 디지털 케이블 방송 표준 DVB-C2 시스템 성능평가)

  • Lim, Hyoung-Muk;Yoon, Jae-Seon;Paik, Jong-Ho;Song, Hyoung-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1588-1595
    • /
    • 2010
  • DVB-C2 is the next generation digital broadcasting standard which will replace the analog cable broadcasting. LDPC and BCH significantly increase performance of forward error correction and allows for the application of higher constellation. Additionally, DVB-C2 is based on OFDM instead of single-carrier modulation, which gives additional flexibility and robustness in typical cable channels. This paper will give an introduction to the DVB-C2 system and spectral efficiency of DVB-C2 compare with DVB-C. Finally, The the simulation which is using BICM and OFDM structure show the performance of the DVB-C2.

An Efficient UEP Transmission Scheme for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 효율적인 UEP 전송기법 제안)

  • Lee, Heun-Chul;Lee, Byeong-Si;Sundberg, Carl-Erik W.;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.469-477
    • /
    • 2007
  • Most multimedia source coders exhibit unequal bit error sensitivity. Efficient transmission system design should therefore incorporate the use of matching unequal error protection (UEP). In this paper, we present and evaluate a flexible space-time coding system with unequal error protection. Multiple transmit and receive antennas and bit-interleaved coded modulation techniques are used combined with rate compatible punctured convolutional codes. A near optimum iterative receiver is employed with a multiple-in multiple-out inverse mapper and a MAP decoder as component decoders. We illustrate how the UEP system gain can be achieved either as a power or bandwidth gain compared to the equal error protection system (EEP) for the identical source and equal overall quality for both the UEP and EEP systems. An example with two/three transmit and two receive antennas using BPSK modulation is given for the block fading channel.

Coded Layered Space-Time Transmission with Signal Space Diversity in OFDM Systems (신호 공간 다이버시티 기법을 이용한 OFDM 기반의 부호화된 시공간 전송기법)

  • Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.644-651
    • /
    • 2007
  • In multiple antenna systems, vertical Bell Labs Layered Space-Time (V-BLAST) systems enable very high throughput by nulling and cancelling at each layer detection. In this paper, we propose a V-BLAST system which combines with signal space diversity technique. The benefit of the signal space diversity is that we can obtain an additional gain without extra bandwidth and power expansion by applying inphase/quadrature interleaving and the constellation rotation. Through simulation results, it is shown that the performance of the proposed system is less than 0.5dB away from the ideal upper bound.

Enhanced Bit-Loading Techniques for Adaptive MIMO Bit-Interleaved Coded OFDM Systems (적응 다중 안테나 Bit-Interleaved Coded OFDM 시스템을 위한 향상된 Bit-Loading 기법)

  • Cho, Jung-Ho;Sung, Chang-Kyung;Moon, Sung-Hyun;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.18-26
    • /
    • 2009
  • When channel state information (CSI) is available at the transmitter, the system throughput can be enhanced by adaptive transmissions and opportunistic multiuser scheduling. In this paper, we consider multiple-input multiple-output (MIMO) systems employing bit-interleaved coded orthogonal frequency division multiplexing (BIC-OFDM). We first propose a bit-loading algorithm based on the Levin-Campello algorithm for the BIC-OFDM. Then we will apply this algorithm to the MIMO system with a finite set of constellations, by reassigning residual power on each stream Simulation results show that proposed bit-loading scheme which takes the residual power into account improves the system performance especially at high signal-to-noise ratio (SNR) range.

Multiuser Bit-Interleaved Coded OFDM with Limited Feedback Infonnation (제한된 궤환정보를 이용한 다중사용자 BIC-OFDM)

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.107-114
    • /
    • 2008
  • In wireless access systems, there has been much interest in enhancing the performance of orthogonal frequency division multiplexing OFDM) in a frequency selective fading channel. If the channel is static and is perfectly known to both the transmitter and the receiver, the water-filling technique with adaptive modulation is known to be optimal. However, for OFDM systems, this requires intensive traffic overheads for reporting channel side information on all subcarriers to the transmitter In this paper, we propose an adaptive modulation and coding scheme for bit-interleaved coded OFDM (BIC-OFDM) for downlink packet transmissions with reduced feedback information. To minimize the feedback information, we employ a rate adaptation method based on the OFDM symbol rather than on each subcarrier. To illustrate the performance gap between the optimal water-filling and the proposed scheme, we will compare cutoff rates for both schemes. It is shown that the loss is less than 2dB while the proposed scheme significantly reduces the feedback payloads. Also, the OFDM system in multiuser environment with subcarrier grouping is considered. It is shown that by exploiting multiuser diversity the throughput of the proposed scheme approaches the channel outage capacity as the number of users and the number of subcarrier groups increase.

Adaptive Bit-Interleaved Coded OFDM over Time-Varying Channels (시변 채널에서 Bit-Interleaved Coded OFDM을 위한 적응 변조 기법)

  • Choi, Jin-Soo;Sung, Chang-Kyung;Moon, Sung-Hyun;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.32-39
    • /
    • 2009
  • When adapting the transmitter to the channel state information(CSI), improved transmission is possible compared to the open loop system where no CSI is provided at the transmitter. However, since the perfect channel information is rarely available at the transmitter, the system design based on the partial CSI becomes an important factor. Especially, in mobile environments, the consideration for the outdated CSI should be applied for mitigating the performance degradation. In this paper, we propose a robust adaptive modulation and coding scheme for bit-interleaved coded orthogonal frequency division multiplexing over time-varying channels. With reasonable feedback overhead, the proposed scheme shows the enhanced performance by compensating for the outdated CSI due to Doppler spread. Simulation results confirm that the performance gain is achieved by applying an accurate BER estimation method.