• 제목/요약/키워드: BGN

검색결과 30건 처리시간 0.014초

Development of Strain-Specific Primers for Identification of Bifidobacterium bifidum BGN4

  • Youn, So Youn;Ji, Geun Eog;Han, Yoo Ri;Park, Myeong Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권5호
    • /
    • pp.909-915
    • /
    • 2017
  • Bifidobacterium bifidum BGN4 (BGN4) has many proven beneficial effects, including antiallergy and anticancer properties. It has been commercialized and used in several probiotic products, and thus strain-specific identification of this strain is very valuable for further strain-dependent physiological study. For this purpose, we developed novel multiplex polymerase chain reaction (PCR) primer sets for strain-specific detection of BGN4 in commercial products and fecal samples of animal models. The primer set was tested on seven strains of B. bifidum and 75 strains of the other Bifidobacterium species. The BGN4-specific regions were derived using megaBLAST against genome sequences of various B. bifidum databases and four sets of primers were designed. As a result, only BGN4 produced four PCR products simultaneously whereas the other strains did not. The PCR detection limit using BGN4-specific primer sets was $2.8{\times}10^1CFU/ml$ of BGN4. Those primer sets also detected and identified BGN4 in the probiotic products containing BNG4 and fecal samples from a BGN4-fed animal model with high specificity. Our results indicate that the PCR assay from this study is an efficient tool for the simple, rapid, and reliable identification of BGN4, for which probiotic strains are known.

Cloning and Heterologous Expression of the β-Galactosidase Gene from Bifidobacterium longum RD47 in B. bifidum BGN4

  • Park, Min Ju;Park, Myeong Soo;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권11호
    • /
    • pp.1717-1728
    • /
    • 2019
  • The gene encoding β-galactosidase was cloned from Bifidobacterium longum RD47 with combinations of several bifidobacterial promoters, and expressed in B. bifidum BGN4. Among the recombinant bifidobacteria, BGN4+G1 showed the highest β-galactosidase level, for which the hydrolytic activity was continuously 2.5 to 4.2 times higher than that of BGN4 and 4.3 to 9.6 times higher than that of RD47. The β-galactosidase activity of BGN4+G1 was exceedingly superior to that of any of the other 35 lactic acid bacteria. When commercial whole milk and BGN4+G1 were reacted, BGN4+G1 removed nearly 50% of the lactose in the milk by the 63-h time point, and a final 61% at 93 h. These figures are about twice the lactose removal rate of conventional fermented milk. As for the reaction of commercial whole milk and crude enzyme extract from BGN4+G1, the β-galactosidase of BGN4+G1 eliminated 51% of the lactose in milk in 2 h. As shown below, we also compared the strengths and characteristics of the strong bifidobacterial promoters reported by previous studies.

생체활성 유리 나노입자 첨가량에 따른 치면열구전색제의 물성평가와 세균부착 억제 효과 (Effect of Physical Properties and Bacterial Adherence Inhibition of Pit and Fissure Sealant Containing Bioactive Glass Nano Particles(BGn))

  • 전수경;김동애
    • 한국콘텐츠학회논문지
    • /
    • 제18권3호
    • /
    • pp.542-549
    • /
    • 2018
  • 본 연구는 불소 미방출 치면열구전색제 $Concise^{TM}$에 제조한 생체활성 유리 나노입자(bioactive glass nano particles: BGn)를 0.5, 1.0, 2.0 wt%를 첨가하여 새로운 치면열구전색제를 조성하고 세균부착실험을 통한 세균부착 억제 효과와 물성을 평가 하였다. 물흡수도와 용해도는 ISO 4049(2009) 규격에 맞추어 직경 10 mm, 두께 2 mm 시편을 제작하여 무게를 측정하여 산출하였으며 세균부착효과는 S. mutans, S. aureus, E. coli 3개의 균주를 이용하여 평가하였다. 실험 결과 물흡수도는 BGn 첨가가 증가할수록 높은 값을 보였으며 용해도는 첨가될수록 낮은 용해도를 보였다(p<0.05). 세균부착실험 결과 대조군 $Concise^{TM}$과 비교하여 BGn을 첨가한 S. mutans 실험군에서 다소 낮은 부착 양상을 보였으나 통계적 유의한 차이는 나타나지 않았으나, S. aureus 실험군과 E.coli 실험군에서는 통계적 유의한 차이를 보였다(p<0.05). 이는 BGn의 세균부착 억제 효과가 있음을 입증한 것이라 사료된다. 향후 BGn 첨가양에 따른 효율성과 폭 넓은 물성 연구가 필요할 것으로 사료된다.

구리/생체활성유리나노입자(Cu/Bioglass nano particles;Cu-BGn)를 첨가한 Mineral Trioxide Aggregate (MTA)의 물성 및 항균 평가 (Physical and Antibacterial Evaluation of Copper/Bioglass Nanoparticles (Cu/Bioglass Nano Particles; Cu-BGn) in Mineral Trioxide Aggregate(MTA))

  • 김동애;전수경
    • 한국콘텐츠학회논문지
    • /
    • 제20권6호
    • /
    • pp.425-432
    • /
    • 2020
  • 본 연구는 상업용 Ortho MTA에 생체활성 유리 나노입자(bioactive glass nano particles)에 구리(Cu) 0.5, 1.0, 2.0, 4.0 wt%를 첨가하여 새로운 Cu-BGn MTA를 조성하고 세균부착실험을 통한 항균효과와 물성을 평가하였다. 경화시간과 압축강도는 ISO 6876(2012) 규격에 맞추어 직경 4 mm, 두께 6 mm 시편을 제작하여 산출하였으며, 항균효과는 S. mutans, E. faecalis 2개의 균주를 이용하여 평가하였다. 실험 결과 경화시간과 압축강도는 Cu-BGn 첨가와는 통계적으로 유의한 차이를 보이지 않았다(p>0.05). 항균실험 결과 대조군 Ortho MTA와 비교하여 Cu-BGn을 4.0 wt% 첨가한 S. mutans 실험군에서 낮은 부착 양상을 보였으며 통계적으로 유의한 차이가 나타났다(p<0.05). E. faecalis 실험군에서도 4.0 wt% 첨가한 군에서 통계적으로 유의한 차이를 보였다(p<0.05). 이는 Cu-BGn의 세균부착 억제 효과가 있음을 입증한 것이라 사료된다. 향후 구강환경을 재현시킬 수 있는 다양한 환경에서의 심도 있는 연구가 필요할 것으로 생각된다.

High Expression of β-Glucosidase in Bifidobacterium bifidum BGN4 and Application in Conversion of Isoflavone Glucosides During Fermentation of Soy Milk

  • You, Hyun Ju;Ahn, Hyung Jin;Kim, Jin Yong;Wu, Qian Qian;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.469-478
    • /
    • 2015
  • In spite of the reported probiotic effects, Bifidobacterium bifidum BGN4 (BGN4) showed no βglucosidase activity and failed to biotransform isoflavone glucosides into the more bioactive aglycones during soy milk fermentation. To develop an isoflavone-biotransforming BGN4, we constructed the recombinant B. bifidum BGN4 strain (B919G) by cloning the structural β-glucosidase gene from B. lactis AD011 (AD011) using the expression vector with the constitutively active promoter 919 from BGN4. As a result, B919G highly expressed β-glucosidase and showed higher β-glucosidase activity and heat stability than the source strain of the β-glucosidase gene, AD011. The biotransformation of daidzin and genistin compounds using the crude enzyme extract from B919G was completed within 4 h, and the bioconversion of daidzin and genistin in soy milk during fermentation with B919G also occurred within 6 h, which was much faster and higher than with AD011. The incorporation of this β-glucosidase-producing Bifidobacterium strain in soy milk could lead to the production of fermented soy milk with an elevated amount of bioavailable forms of isoflavones as well as to the indigenous probiotic effects of the Bifidobacterium strain.

Modulatory Activity of Bifidobacterium sp. BGN4 Cell Fractions on Immune Cells

  • Kim Nam-Ju;Ji Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.584-589
    • /
    • 2006
  • Bifidobacteria has been suggested to exert health promoting effects on the host by maintaining microbial flora and modulating immune functions in the human intestine. We assessed modulatory effects of the different cell fractions of Bifidobacterium sp. BGN4 on macrophage cells and other immune cells from the spleen and Peyer's patches (PP) of mouse. Cell free extracts (CFE) of the BGN4 fractions induced well-developed morphological changes in the macrophages and increased the phagocytic activity more effectively than other fractions in the mouse peritoneal cells. Nitric oxide (NO) production was significantly reduced by both the cell walls (CW) and CFE in the cultured cells from the spleen and PP. The production of interleukin-6 (IL-6) and interleukin-10 (IL-10) was eminent in the spleen cells treated with experimental BGN4 cell fractions. However, in the PP cells, IL-6 was slightly decreased by the treatment with the whole cell (WC) and CW, whereas IL-10 was significantly increased by the treatment with the CW and CFE. These results suggest that different types of bifidobacterial cell fractions may have differential immunomodulatory activities depending on their location within the host immune system.

Message Expansion of Homomorphic Encryption Using Product Pairing

  • Eom, Soo Kyung;Lee, Hyang-Sook;Lim, Seongan
    • ETRI Journal
    • /
    • 제38권1호
    • /
    • pp.123-132
    • /
    • 2016
  • The Boneh, Goh, and Nissim (BGN) cryptosytem is the first homomorphic encryption scheme that allows additions and multiplications of plaintexts on encrypted data. BGN-type cryptosystems permit very small plaintext sizes. The best-known approach for the expansion of a message size by t times is one that requires t implementations of an initial scheme; however, such an approach becomes impractical when t is large. In this paper, we present a method of message expansion of BGN-type homomorphic encryption using composite product pairing, which is practical for relatively large t. In addition, we prove that the indistinguishability under chosen plaintext attack security of our construction relies on the decisional Diffie-Hellman assumption for all subgroups of prime order of the underlying composite pairing group.

Enhancement of Anti-tumorigenic Polysaccharide Production, Adhesion, and Branch Formation of Bifidobacterium bifidum BGN4 by Phytic Acid

  • Ku, Seock-Mo;You, Hyun-Ju;Ji, Geun-Eog
    • Food Science and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.749-754
    • /
    • 2009
  • The polysaccharide (BB-pol) extracted from Bifidobacterium bifidum BGN4 showed growth inhibitory effects on several colon cancer cell lines such as HT-29 and HCT-116. To increase the yield of polysaccharide, B. bifidum BGN4 was cultured in various culture media with different compositions. When B. bifidum BGN4 was cultured in modified MRS broth containing phytic acid, the cells showed increased branch formation and enlarged morphology. The content of total carbohydrate and the ability of adhesion to intestinal epithelial cells were also increased by phytic acid. The polysaccharide obtained from the cells grown in the presence of phytic acid inhibited the proliferation of cancer cell lines such as HT-29 and MCF-7 cells but not normal colon cell line, FHC. Taken together, Bifidobacterium grown in the presence of phytic acid may confer enhanced beneficial function for the host.

Evaluation of S-Adenosyl-L-Methionine Production by Bifidobacterium bifidum BGN4

  • Kim, Ji-Youn;Suh, Joo-Won;Ji, Geun-Eog
    • Food Science and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.184-187
    • /
    • 2008
  • S-Adenosyl-L-methionine (SAM) is an important metabolic intermediate in living organisms and participates in many reactions as a methyl group donor. SAM has been used as a dietary supplement and is proposed to have beneficial effects on the liver and brain. The aim of this study was to find lactic acid bacteria with high SAM-producing ability to be used as SAM enhancing probiotics. We used high performance liquid chromatography (HPLC) to quantify the amount of SAM produced, and found that Bifidobacterium bifidum BGN4 produced a significantly higher amount of SAM than other Bifidobacterium or Lactobacillus strains. The effect of various carbon and nitrogen sources on SAM production was examined. This study confirmed that Bifidobacterium may be utilized as a source of SAM in the functional food industry.

Characterization of Adhesion of Bifidobacterium sp. BGN4 to Human Enterocyte-Like Caco-2 Cells

  • Kim, In-Hee;Park, Myung-Soo;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권2호
    • /
    • pp.276-281
    • /
    • 2003
  • The adhesion of probiotic bacteria to the intestinal mucosa is one of the desirable properties for their colonization in the intestinal tract, where these bacteria constantly compete with other bacteria. The adhesion of different strains of bifidobacteria to Caco-2 cells was compared. Among the strains examined, BGN-4 showed the highest adhesion level and the greatest cell surface hydrophobicity (CSH). No close relationship was found between the adhesion and CSH of the strains. Upon protease and heat treatment, the adhesion of the BGN-4 to the Caco-2 cells decreased significantly. The cells grown at $42^{\circ}C$ showed a lower CSH and self-aggregation levels than cells grown at $37^{\circ}C$. The treatment of EGTA did not have any effect on the adhesion. The degree of adhesion did not differ among the experimental groups in which galactose, mannose, or fucose were added in the adhesion assay mixture. The results suggest that the adhesion of the Bifidobacterium to the epithelial cells may be affected by the composition and structure of the cell membrane and interacting surfaces.