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The Boneh, Goh, and Nissim (BGN) cryptosytem is the 
first homomorphic encryption scheme that allows 
additions and multiplications of plaintexts on encrypted 
data. BGN-type cryptosystems permit very small plaintext 
sizes. The best-known approach for the expansion of a 
message size by t times is one that requires t 
implementations of an initial scheme; however, such an 
approach becomes impractical when t is large. In this 
paper, we present a method of message expansion of BGN-
type homomorphic encryption using composite product 
pairing, which is practical for relatively large t. In addition, 
we prove that the indistinguishability under chosen 
plaintext attack security of our construction relies on the 
decisional Diffie–Hellman assumption for all subgroups of 
prime order of the underlying composite pairing group. 
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I. Introduction 

Developing an efficient homomorphic encryption scheme is 
a hot issue in cryptography due to its versatility in providing 
security in cloud services. Currently, many homomorphic 
encryption schemes are constructed from lattices. However,   
a lattice-based homomorphic encryption scheme requires 
parameters of very large size, which makes such schemes 
impractical in the near future. On the other hand, pairing-based 
cryptography is now considered as practical for use with many 
platforms. 

The Boneh, Goh, and Nissim (BGN) cryptosystem is 
additively homomorphic, but it allows multiplication over 
ciphertext only once. Such a restriction on a homomorphic 
evaluation might have limited applications. However, many 
statistics of numerical data can be expressed as quadratic 
polynomials and the BGN cryptosystem can be used to 
evaluate such statistics homomorphically over ciphertexts. The 
BGN cryptosystem can be used to construct an efficient secure 
auction protocol. Despite its invaluable contribution as an 
efficient (+, ×)-homomorphic encryption, the original BGN 
cryptosystem has, in practice, suffered from two challenging 
issues: message sizes are required to be very small and it uses 
larger elliptic curve groups.  

The BGN cryptosystem uses a pairing : Te G G G   with 

TG G N PQ    [1]. Here, the cyclic group G is a 
subgroup of an elliptic curve group over a finite field. It is 
proven that the security of the BGN cryptosystem is based on 
the subgroup decision problem for GP in G, which is as hard as 
factoring N [2]. Currently, at the year 2015, it is recommended 
that N be at least 2,048 [3], [4]. This requires that group G in 
the BGN cryptosystem be larger compared to that of many 
known elliptic curve–based cryptosystems.   
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Freeman presented how to convert a BGN cryptosystem of 
composite pairing to a (+, ×)-homomorphic encryption using a 
product of prime pairings [5]. Therefore, Freeman contributed 
to reducing the size of the parameters of the original BGN 
cryptosystem. However, the message size of the Freeman 
conversion is the same as that of the original BGN 
cryptosystem. The best-known method of expanding the 
message size by t times while preserving the (+, ×)-
homomorphic feature requires t implementations of an initial 
scheme using the Chinese remainder theorem (CRT) directly. 
However, this method becomes impractical when t is large.  

In this paper, we present how to expand the message size of 
the BGN cryptosystem while maintaining efficient parameter 
sizes. Our idea is to use Freeman’s product pairing with a 
bilinear group — of composite order n. In our scheme, all 
prime factors of n are public, and we use the prime factors to 
expand the message size. This distinguishes our scheme from 
many other schemes that use pairing groups of composite order, 
for such schemes assume that prime factors are private, not 
public [6], [7].  

By using a bilinear group of composite order n =  

1 2 tp p pΛ  with known prime factors pi, we expand the     

bit size of a message by t times. We also prove that the 

indistinguishability under chosen plaintext attack (IND-CPA) 

security of our construction relies on the decisional Diffie–

Hellman (DDH) assumption on the subgroups of order pi of the 

underlying composite pairing group, for all i = 1, … , t.  
The rest of the paper is organized as follows. In Section II, 

we review the BGN cryptosystem and product pairing with 
projections. We also present a naive message expansion of a  
(+, ×)-homomorphic cryptosystem using the CRT. In   
Section III, we describe how to construct a product of 
composite pairing. In Section IV, we present our scheme with 
security proof. We also suggest how to select parameters and 
compare it with the naive approach of [5]. In Section V, we 
conclude our paper. 

II. Preliminaries 

1. BGN Cryptosystem  

The original BGN cryptosystem uses a symmetric pairing; 

however, we present a scheme based on an asymmetric pairing 

by considering recently announced security issues related to 

symmetric pairing. The BGN cryptosystem uses a pairing 

1 2: Te G G G   with 1 2 TG G G N PQ     and Gj 

= <gj>, where N is difficult to factor. The BGN cryptosystem 

consists of the following five algorithms: 
1) KeyGen: for security parameter λ, output 
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5) Dec: for a ciphertext 1 2 TG G G c Υ , compute 
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We note that α, the size of plaintext, should be chosen to be as 
small as possible such that a decryption can still be efficiently 
computed.  

2. Product Pairing with Projections 

We begin with a product pairing introduced by Freeman [5] 
for the BGN cryptosystem.  

Definition 1. For a pairing 1 2ˆ ,: Te G G G   we define the 

product pairing 2 2 4
1 2: Te G G G   by  

 
 
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To define the BGN cryptosystem over the product pairing, 

the following notations are used. Assume that 1G   

2 .TG G n   We note that Freeman only considers n to be 

a prime number in the product pairing; whereas, we consider a 

composite number n in the following. 

For , , ,ij ij ij nx y z Z ,, iu v G and , , , ,TG     we 
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and  

31 3211 21 41 12 22 42

13 23 33 43 3414 24 44

( , , , ) ( , ,

, ).

z zz z z z z z

z z z z zz z z

           

       

Z

 

For a randomly chosen * *( , ) ,j j n na b Z Z   we consider the 

subgroups  1 1 2
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We also define projections 2 2:j j jG G   for j = 1, 2,  

and 4 4:T T TG G   as follows:  1 11 12,( )g g   
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With these projections, we see that (1) below holds. 
For all 11 12 1,g g G  and 21 22 2, ,g g G  
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We also have, 
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Therefore, (1) holds. We also have, for i = 1, 2,  
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or equivalently, we have ker( ).i iH   
Combining with (1), we see that  

2 2
1 2 1 2 )ker .( TH G G H   Υ  

We also define the canonical projections as follows: 

2 2 2
1 1 2 1proj : G G G   by 1 1 2 1proj ( , ,) u u u  

2 2 2
2 1 2 2proj : G G G   by 2 1 2 2proj ( , .) u u u  

Freeman pointed out that the subgroup decision assumption 

for a subgroup Hi of 
2
iG is equivalent to the DDH assumption 

on Gi when |Gi| is prime. Freeman converted the BGN 

cryptosystem to a scheme using a product of prime pairings 

with projection. Freeman’s conversion of the BGN to a product 

pairing is exactly the case t = 1 in our construction, which will 

be described later. The size of the plaintext of Freeman’s 

conversion of the BGN cryptosystem is the same as that of the 

original BGN cryptosystem. A simple approach of expanding 

the message size by t times is to perform t implementations of 

the basic scheme and combine them with the CRT. 

3. CRT 

Throughout this paper, we use two public tuples of prime 

numbers, (q1, … , qt) and (p1, … , pt), where the qi’s are to be 

used to encode plaintexts and pi’s to encrypt the resulting 

encoded plaintexts.  

For 1 2 ( ),t i jN q q q q q Λ the CRT provides a ring 

isomorphism, 
1 1, , ,mod :

t tq q N q qZ Z Z   Λ defined by 

1 , , 1mod ( ) ( mod , , mod ).
tq q tx x q x q   We see that the 

inverse of 
1 , ,mod

tq q  is 
1( , , )CRT .

tq q  

Remark. A naive message expansion of a (+, ×)-

homomorphic cryptosystem using CRT can be described as 

follows. Suppose we have a (+, ×)-homomorphic encryption 

scheme with message space M = ZQ and ciphertext space C. 

Set 1 2 ),(t i jN q q q q q Λ  where the qi’s are primes 

such that iq Q . The encryption process can then be defined 

as follows: 

For any ,Nm Z we encode 
1 , ,mod ( )

tq qm m %  

1( , , ), ,t im m m Q  and then encrypt each mi using the 

encryption scheme. Then, we obtain a ciphertext ic C  and 

set the ciphertext c of m as 1( , , ) .t
tc c C  c  

The decryption process is as follows. For a given ciphertext, 

1( , , ) ,t
tc c C  c  decrypt each ci and obtain .

ii qm Z  

Then, we compute  1 1, ,CRT ( , , ).
t tq qm m m    

Because the CRT is a ring isomorphism, the resulting 

encryption scheme is (+, ×) homomorphic. Therefore, one can 

expand the message size of the encryption by t times. However, 

we see that a ciphertext expansion of the same ratio is 

inevitable in this approach. Therefore, if t is large, then it 

becomes impractical.  
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III. Composite Product Pairing 

1. Pairings of Composite Order 

Boneh and others [8] constructed ordinary curves with 

composite-order bilinear groups using the Cocks–Pinch 

method. As a result, one can construct a              

pairing 1 2ˆ : Te G G G   of composite order n with 1G   

2 ,TG G n   where G1 is a cyclic subgroup of E(Fq), an 

elliptic curve group over the finite field Fq, G2 is a cyclic 

subgroup of ( ),kq
E F  an elliptic curve group over the finite 

field , and isk Tq
F G a cyclic subgroup of 

*
kq

F . 

Because GT is a subgroup of * ,kq
F  we see that n divides  

*1 .k

k

q
q F   By the Pohlig–Hellman algorithm [9], it is 

necessary to choose qk such that ( 1)kq n  has a large 

enough prime factor to resist discrete logarithm problem 

solving for GT as a subgroup of * .kq
F  Currently, it is 

recommended to have a prime factor of 2,048 bits. We also 

note that G1 is a subgroup of E(Fq), which implies that n 

divides |E(Fq)|. Note that, we have  

1

1

1 2 , 2( , ) (ˆ ,)

kq

n
n Pe P P f P



  

where 
1, (*)n Pf  is a rational map, which is usually computed 

by using the Miller algorithm.  
A bilinear map is parameterized by (q, n, tr, k, D), where tr = 

q + 1  |E(Fq)| is the trace of the elliptic curve, k is the 
embedding degree, and D is the discriminant.  

Koblitz [10] found that an ordinary curve of embedding 
degree k > 2 with composite-order group could leak the 
factorization of the group order. As in many cryptographic 
schemes using composite pairings, if the prime factors of a 
group order are to be kept secret for its security, then an 
ordinary curve of embedding degree k > 2 should not be used. 
However, in our scheme, we use a composite pairing where all 
the prime factors are public. Therefore, we can use a higher 
embedding degree. The security requirement related to prime 
factors in our scheme is the DDH assumption on the cyclic 
group of each of the prime factors.  

Currently, it is recommended that the prime factor p should 
be of 224 bits to guarantee the DDH assumption on the cyclic 
groups of order p until the year 2030 [3], [4].  

We present examples of bilinear groups of composite order  
n = p1p2p3 for distinct primes p1, p2, p3 of small sizes using the 
Cocks–Pinch method. In our experiment, we use MAGMA. In 
the following examples, we choose a generator, g2, from the 
elliptic curve over the base field since E(Fq) is also a subgroup 
of ( ),kq

E F  which yields *
1 2,( ) .T qg e g g F  Next, we 

should set generators g2, gT with the property of non-

degeneracy in the pairing evaluation. In general, curves with 
small ratio of log2 n and log2 q are desirable to speed up the 
arithmetic on the elliptic curves [9]. On the other hand though, 
at times, a larger ratio of log2 n and log2 q is acceptable for the 
sake of a fast pairing computation. Not many results are known 
for the generation of pairing-friendly elliptic curves for pairings 
that are of composite order and public prime factors [11]. This 
necessitates further work on generating pairing-friendly elliptic 
curves for pairings that are of composite order.  

The following are example parameters (q, n, tr, k, D),     
of composite order pairing 1 2ˆ : Te G G G   with 1G   

2 .TG G n   
Example 1. We provide an example of pairing ˆ :e   

1 2 TG G G  with n = p1p2p3, k = 1, D = 1. We generate an 
elliptic curve over Fq, defined by y2 = x3 + x. We choose  the 
cyclic groups 1 1 2 2, , and T TG g G g G g   as shown 
in Table 1. 

Owing to the embedding degree (k = 1) in Example 1, the 

cyclic subgroups, Gi’s, are two distinct subgroups of elliptic 

curves over the field Fq, and GT is a cyclic subgroup of the 

multiplicative group *.qF  

Example 2. We provide an example of a pairing, ˆ :e  

1 2 TG G G  with n = p1p2p3, k = 2, D = 1. We generate an 

elliptic curve over Fq, defined by y2 = x3 + x. And we choose 

the cyclic groups 1 1 2 2, , and T TG g G g G g    as 

follows (see Table 2). 

Because we consider the embedding degree k = 2 in this 

 

Table 1. Parameters for Example 1. 

 Values 

tr 2 

q 
205496287750998798078028807983912424275076159940
8078234952147994867614170371943383, where log2q= 309

Curves y2 = x3 + x 

1 2 3n p p p
3777641531202213662745286501136101531862152453, 
where log2 n = 151 with log2 p1 = 49, log2 p2 = 50, log2 p3 = 52

g1 

(154074463401954681164008506675678730231295984929
127689069027356830329316305557358253327964255: 
238551455294957387415182340 

779234776554140378987694308567900564272120457108
798531248453486858) 

g2 

(128273348009972137168732494983202734104727775156
2377469778305621408877866761332660985780396938: 
47797129551823110014230211 

875234125922336012548918666243602854503712415815
9908757895761682282) 

gT 
198314557317414929652481239198865605418266419589
6827913997840764888507889682408512084900532019 
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Table 2. Parameters for Example 2. 

 Values 

tr 68256080518212369350138789467224298131905786 

q 

307499040115614445740574039202747277147754769192

270934616576637397651705525004410170131483553814

366664367810113658067296214771537216857431959251

3407662308234386617312143693, where log2 q = 569 

Curves  y2 = x3 + x 

1 2 3n p p p  
34128040259106184675069394733612149065952893, 

where log2 n = 145 with log2 p1 = 50, log2 p2 = 50, log2 p3 = 45

g1 

(234286228963512321037100313472378644687958654422

939008503908255857262875544529156391885859836705

5836231204738325264620547073929661140600265484255

62713845414981824306541862: 

148892934331759104177995282728057240102269153402

693158310571017649771947221967482265261768100346

989138939281410091014487687320477405191530831432

1718010203136679189030171224) 

g2 

(134851659391139756835279022126372699855827027559

7022056117769212569146107737828703407666111369010

3992734885268198272558091030751631185518877496477

95972736938477775374670549: 

1120158310653130683916182456568546098986875005824

590860891730590071870488572054097555829304019577

1803455867986781459003505141166571280035598878301

74919977211117921559229448) 

gT 

9848176150741103640470955017844224630701269331627

1394391488134616518744721138655970217959448759012

566545080830913157463812806164014808864604521742

5572785442113677430069227 

 

 

example, G2 is a cyclic subgroup of 2( )
q

E F  and GT is a 

cyclic subgroup of the multiplicative group 2

* .
q

F  For 

simplicity, we present the case 22 ( ) ( ),q q
G E F E F   and 

2

* * .T q q
G F F   In [12], Scott presents an efficient setup for 

some choice of curves with k = 2 and implementations.  

Example 3. We provide an example of a pairing, ˆ :e  

1 2 TG G G   with n = p1p2p3, k = 4, D = 1. We consider an 

elliptic curve over Fq, defined by y2 = x3 + 2x. In addition, we 

choose the cyclic groups 1 1 2 2, ,G g G g  and 

T TG g  as shown in Table 3. 

Because we consider the embedding degree k = 4 in this 

example, G2 is a cyclic subgroup of 4( )
q

E F  and GT is a 

cyclic subgroup of the multiplicative group 4

* .
q

F  For 

simplicity, we present the case 42 ( ) ( ),q q
G E F E F   

4

* *and .T q q
G F F   

For a given pairing, 1 2ˆ : Te G G G  , of composite order, 

we can define the product pairing 2 2 4
1 2: Te G G G   as in 

Table 3. Parameters for Example 3. 

 Values 

tr 529558146300128369161775159232145734233138062 

q 

943042275769278697323245292841161694874368184167

518714105386899073680952781466413207295333829917

604552335041822074913991433206929574735050694171

903923908263727145368204543651194561, where log2q = 

598 

Curves y2 = x3 + 2x 

1 2 3n p p p 566234142875821840780288412704986392583220713, 

where log2 n = 151 with log2 p1 = 50, log2 p2 = 51, log2 p3 = 50

g1 

(815480626000401875754038274167508540073497413431

363410054763209708222611869664928324681759448561

450975063765990588553002811825479082724033782531

166217553510589904243055784187458826: 

401651204535170985287741440897419801958272435870

013778389443083056917764854606427110441201960997

806737652925849407018199779835174094261831415431

466883958957569494786789243486885425) 

g2 

(523197517060878671271983367862668109609583418844

070035686945224923570136722776609223313947028035

337323534346627000915179919153859410584529045099

901947823482495322905046260224896942: 

260570329107605390794080892421196594471140273461

760588121577364564786295034005793802859289551577

530607288747904475821942996205124330951003761887

178412668793557405297661442873788686) 

gT 

882586683663552083670275758545909413371735242577

186838871004859284660746426395362342279791567302

271280790968320552268531347845648562937883445181

531931978190549253954893690857759496 
 

 
Definition 1 with the projections 2 2:i i iG G   for i = 1, 2 
and 4 4: ,T T TG G   where (1) holds. 

2. DDH Problem (DDHP) on Cyclic Groups of Composite 
Order 

In our paper, we consider a bilinear group G of composite 
order, where the DDHP is infeasible on G. There are known 
results on the hardness of the discrete logarithm problem on a 
cyclic group of composite order in terms of the subgroups of 
prime orders [9]. However, we cannot find any results on the 
DDHP on a cyclic group of composite order. In this paper, we 
present how to assure the hardness of the DDHP on a cyclic 
group of composite order.  

The DDHP on a cyclic group G is the problem of deciding if 
z = gab for a given random triple 4, , .( , )a bg g g z G  For our 
purposes, we define the DDHP on the product of cyclic groups 
of prime order.  
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The DDHP for the group 
1 tp pG G Λ  is the problem to 

decide whether i ia b
i iz u , for all i and for a randomly given 

tuple 1 1
1 2 1 1 1(( , , , ); , , ,, , ; , , ).t ta ba b

t t t tu u u u u u u z z     

Now, we prove the following theorem on the equivalences  

of the hardness of the DDHP for the groups G and 

1
.

tp pG G Λ  

Theorem 1. The DDHP for a cyclic group G with G n   

1 tp pΛ  is equivalently hard to the DDHP for a product group 

1
,

tp pG G Λ  where 
ip iG u    with .in p

iu g   

Proof. It is enough to show that any DDHP instance for G can 

be converted to a DDHP instance for 
1

,
tp pG G Λ which 

gives the correct answer to the original instance of the DDHP 

in G, and vice versa. Suppose that the DDHP instance  

  4, , ,a bg g g z G  is given. We compute an instance of 

DDHP for the group 
1 tp pG G Λ as follows: 

 1 1
1 1 1 1( , , ); ( , , ), ( , );( , , ) ,t ta ba b

t t t tT u u u u u u z z      

where , ( ) (, ,)i i i i in p a n p b n pa b
i i iu g u g u g    and .in p

iz z  

It is clear to see that T is a DDH tuple for 
1 tp pG G Λ  if and 

only if  , , ,a bg g g z  is a DDH tuple for G. Therefore, the 

solution of a DDHP for the instance T is the solution of the 

DDHP instance  , , ,a bg g g z  in G.  

Now, we suppose that an instance S of the DDHP for the 

group 
1 tp pG G Λ  is given as 

S =  1 1
1 1 1 1,( , , ); , , , ; , , .,t ta ba b

t t t tu u u u u u z z     

We compute an instance (g, v, w, z) of the DDHP for group 
G as follows: 

1 2

1 2

1 2

1 2

1 2

1 2

,

,

,

.

t

t

t

aa a
t

bb b
t

t

g u u u

v u u u

w u u u

z z z z
















Λ

Λ

Λ

Λ

 

Now, we show that (g, v, w, z) is a DDH tuple in G if and only 

if S is a DDH tuple in 
1

.
tp pG G Λ  Because the order of ui, 

zi’s is pi, we see that  

 

,

,

,

,

 i i

i

i i

i

i i

i i

n n

p p
i

a nn

p p
i

b nn

p p
i

n n

p p
i

g u

v u

w u

z z





 

 

 

 or equivalently 

 
 
 
 

 

 

 

,

,

,

. 

i

i

i

i i

i

i i

i

i

n

p
i

n

p a
i

n

p b
i

n

p
i

g u

v u

w u

z z










 


 









 

Here, we use the fact that there are ,i is Z   such that 

1i i i
i

n
s p

p
    from gcd , 1.i

i

n
p

p

 
 

 
 

Therefore, we see that if (g, v, w, z) is a DDH tuple in G, then 

( , , , )i ia b
i i i iu u u z  is a DDH tuple in 

ipG for all 1, , ;i t  that 

is, S is a DDH tuple in 
1

.
tp pG G Λ  Conversely, if S is a 

DDH tuple in 
1

,
tp pG G Λ  then ( , , , )i i i in p n p n p n pg v w z  

is a DDH tuple in 
ipG for all i, which implies that (g, v, w, z) is 

a DDH tuple in G.  
Therefore, the solution of the DDHP for the instance (g, v, w, 

z) in G is the solution of the DDHP instance S in 
1pG   

.
tpGΛ                                          ■ 

By Theorem 1, we see that the DDHP in the cyclic group G 

with 1 tG n p p  Λ  is hard if and only if the DDHP is hard 

in the cyclic subgroup of G of order pi, for all i = 1, … , t. 

Therefore, one has to choose pi’s as large as the order of the 

cyclic group where the DDH assumption holds to assure the 

hardness of the DDHP in G. Currently, by taking the size of pi’s 

to be as large as 224 bits, we can assume that the DDHP in G is 

hard. 

IV. Our Construction 

1. Proposed Scheme 

We now present our message expansion of the BGN 

cryptosystem by using a product of composite pairing. We 

present how to expand the message size by up to t times. In our 

construction, we set the message space as ZN, where N = 

q1···qt; the qi’s are small distinct primes, where the discrete 

logarithm problem with an exponent less than qi is easily 

solvable. Note the factor qi is of the same size as the message 

size of the original BGN as well as Freeman’s construction. 

Therefore, our construction expands the plaintext size by up to 

t times compared to the original schemes. 
KeyGen: for a given security parameter, proceed with the 

following: 

1) Generate a bilinear map 1 2ˆ : Te G G G   of a composite 

order 1 ,j T tG G n p p   Λ where j jG g  for j = 1, 

2 and p1, … , pt are distinct primes of λ bits. And construct 

the composite product pairing 2 2 4
1 2: Te G G G   as in 

Definition 1.      

2) Generate 2
j jGg  at random. 

3) Generate * *
1 1 2 2, , ,( ) ( ) n na b a b Z Z   at random and set 

   1 1 2 2
1 1 1 2 2 2, , , ,a b a bg g g g h h  
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1 1 2 2

1 1 2 2

  
, .

    

b b b b

a a a a

      
    
   

A B  

We denote 2.i i iH G h  

4) Set 

1 1 1 1 1

2 2 2 2 2

1 2 3 4 1 2 3 4

( , ) ( , )

( , ) ,

(

,

( ) ,

( ), , , ) , , , .T

u v u v

u v u v




         

 
 
 

A

B

A B

 

5) Set the message space ZN, where N = q1 … qt and qi’s are 
small distinct primes, as described above.  

6) Output 

 2 2 4
1 2 1 2 1 21

1 2

pk , ( , , , , : ,

sk ( , )

,

,

)

.

i Ti t

t

N p e G G G

  
 

  



g g h h
 

Enc: for a message ,Nm Z  

a) for the prime factors qi of N, compute 
1 , ,mod ( )

tq q m   

11, , .( )
tt q qm m Z Z   Λ  

b) compute the ciphertext, for 1 ,tn p p Λ  and randomly 
choose *, ' nr r Z . 

 1 1

1 1
1 1 2 2( ,) ( ) .( ) ( )

t t

t t

m n m nm n m n

p p p pr r
   

c g h g h
Λ Λ

 

Eval×: for ciphertexts 2 2
1 2 1 2, ,G G c c  compute  

  4
1 1 2 2proj ( , proj () ) .Te G  c c c  

Eval+: for ciphertexts c1, c2, compute 

 
 

1 2

1 2

2 1 2 1

1 1 2 2

                                 Case (i),

                                 Case (ii),

proj ( ) Case (iii),

proj ( ) Case

,

, (iv).

e

e




   
 

c c

c c
c

c g c

c g c

 

Here, we set  

Case (i): 2 2
1 2 1 2, ,G G c c   

Case (ii): 4
1 2, ,TGc c  

Case (iii): 2 2 4
1 1 2 2, ,TG G G  c c   

Case (iv): 2 2 4
2 1 2 1, .TG G G  c c  

Dec: for a ciphertext c, proceed with one of the following: 

1) Case 1: 
4 .TGc  Compute 

4( ) .T TG w c  For i = 1, 2, 

… , t, compute ,in p
i y w compute  

3 3

1 2( , ) ,in p

i T ez g g   

compute log .
ii i  z y  Compute 

1 , , 1CRT ( , , ).
tq q t     

Output  as the plaintext. 
2) Case 2: 

2 2
11 12 21 22 1 2(( , ), ( , ) .)c c c c G G  c  Compute w = 

  2
1 1 1proj ( ) .G c  For i = 1, 2, … , t, compute ,in p

i y w  

compute  
2 2

1 1( ) ,in p

i z g  compute log .
ii i  z y  

Compute 
1 , , 1CRT ( , , ).

tq q t     Output  as the 

plaintext. 

2. Correctness of Our Construction 

Recall the fact that ker( )i iH   and  1 1 2 2 ,( ) ( )e   g g  

 1 2,( ) .T e g g  Now, we check the correctness of our 

construction. First, we want to show that Dec(sk, Enc(pk, m)) = 

m. We consider Enc(pk, m) = c, which has the following form: 

 1 1

1 1
1 1 2 2,

t t

t t

m n m nm n m n

p p p pr r
   

  c g h g h
Λ Λ

. 

Then, we have the following, successively:  

1)  
1

1
1 1 1 1proj ( ) ( .)

t

t

m nm n

p p 
 

 w c g
Λ

 

2) 

2

2

1 1( ) ,
i

i i

nn m
p p

i 


 y w g  

3) log ,
ii i im  z y  where  

2

2

1 1)( .i

n

p
i z g  

Therefore, we have  

1 , , 1CRT ( , , ) .
tq q tm m m     

Now, we check the correctness of Eval× in our construction. 

The input of the algorithm Eval× is of the form 2 2
1 2, ' G G c c  

such that Enc(pk, m) = c  and Enc(pk, m) = c  for some 

., Nm m Z  Then, we get the following, successively: 

1)  Eval pk, ( , ') c c c  

 
1 1

1 1

1 2

''

1 1 2 2

proj ( ), proj ( ')

, .
t t

t t

m n m nm n m n

p p p pr r

e

e
   





 
 
 
 

c c

g h g h
Λ Λ  

2) ( ) T w c  

 1 1

1 1

''

1 1 2 2( ) , ( ) .
t t

t t

m n m nm n m n

p p p pe  
   

 g g
Λ Λ

 

3)  
1 1 2 2( ) , ( ) .....(*)

i i i

i i i

n
m n m nn p

p p p
i e  



  y w g g  

 

 

3

3

3

3

1 1 2 2

1 2

( ), ( )

, .( )

i i

i

i

i

m m n

p

m m n

p
T

e

e

 











g g

g g

 

4)  
3

3

1 2log , for ( , ) .i
i

n

p
i i i i i Tm m e   z y z g g  

The equality (*) above is true from the fact that  

1 1 2 2( ) , ( ) 1
ji

ji

m nm n
ppe  
 

   g g if i ≠ j. 

Therefore, we have  

 
1 , , 1 1CRT , , .

tq q t tm m m m mm        

Because the multiplications of the group elements correspond 
to the addition of the exponents, one can similarly show the 
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correctness of Eval+.  

3. Security Analysis 

As in Freeman’s BGN cryptosystem, the IND-CPA security 
of our scheme is based on the hardness of the subgroup 
decision for 2.j jH G   
Theorem 2. If the subgroup decision problems of 2

j jH G  
for randomly chosen subgroups Hj are hard, then the new 
scheme in our construction is IND-CPA secure.  

Proof. It is enough to show that if there is a successful IND-

CPA adversary X against our encryption scheme, then we can 

construct a successful solver D of the subgroup decisional 

problem of 2
j jH G  for some j (= 1 or 2). Without loss     

of generality, we assume j = 1 and the subgroup decision 

problem for j = 2 is hard. For a given instance  1 1 ,H  h  

2 2
1 1 1 1,G G g z  of the subgroup decision problem for   

j = 1, D acts as the challenger of an IND-CPA security game to 

the adversary X against our encryption with  2pk , ,j je G g  

, 1,2j jH j h  for randomly chosen  2 2 2 2, .H G h g  

For the given messages m0, m1, which are arbitrarily chosen by 

the IND-CPA adversary X, the challenger D chooses random 

{0,1}b  and computes  1 2( ) ( )
1 1 2 2, ,b bm mr r

b
 c g z g h  where  

1

,
, , ,1 ,( ) with mod ( ) ( , , ).

t

b i
b q q b b b t

i

m n
m m m m

p
     

Challenger D sends cb to adversary X and then X responds with 
{0,1}.b Challenger D outputs 1, which means 1 1,Hz  if 

and only if b = b.  

We consider three IND-CPA security games with respect  

to the same public key,  2pk , , 1,2 .,j j j je G H j   g h  

The differences of each game are from the construction of the 

ciphertext to be challenged in the following way: 

1)  1 2( ) ( )
0 1 1 2 2Game : , ,b bm mr r

b
  c g h g h  

2)     1
2

1 1 1 2 2Game : ,b b
rm m r

b
  c g g h

υυρ
w  

for randomly chosen 2
1 1G
υυρ
w ,  

3)     1 2

2 1 1 2 2Game : ,b b
r rm m

b
  c g g

υυρ υυρ
w w  

for randomly chosen 2
1 1Gw  and 2

1 2 .Gw   

We note that Game0 is exactly the same as the IND-CPA 

security of our encryption scheme. From the hardness of the 

subgroup decision problem for 2
2 2H G , bc  and bc  are 

indistinguishable for any probabilistic polynomial time 

adversary; therefore, we see that Pr[X wins Game1] – Pr[X 

wins Game2] is negligible. Because bc  is uniformly 

distributed in 2 2
1 2 ,G G  we see that Pr[X wins Game2] = 1/2.  

For challenger D, as a solver of the subgroup decision 

problem, we have  
2

1 1 1 1 1 1

0

Pr[ ( , , ) 1]

Pr[X wins Game ]

( ),

D H G H

n

   




h g z
ρ


 

2 2
1 1 1 1 1 1

1

2

Pr[ ( , , ) 1]

Pr[ wins Game ]

Pr[ wins Game ] negl( )

1/ 2 negl( ).

randD H G G

X

X n

n

   


 
 

h g z

 

Therefore, we see that  
2

1 1 1 1 1 1

2 2
1 1 1 1 1 1

| Pr[ ( , , ) 1]

Pr[ , , 1] |

1
 | ( ) negl( ) | .

2

( )rand

D H G H

D H G G

n n

   

    

  

h g z

h g z



 

Because X is a successful IND-CPA adversary against our 
scheme, we see that ( ) 1 2n   is non-negligible; therefore, 

| ( ) 1 2 negl( ) |n n  is non-negligible. Thus, D is a 

successful solver of the subgroup decision problem 

 2 2
1 1 1 1 1 1 ., ,H G G  h g z                      ■ 

Now, we analyze the strength of the subgroup decision 
assumption of 2

j jH G  with 1| |j tG n p p  Λ for randomly 
chosen subgroup Hj. 
Theorem 3. The subgroup decision assumption of 2

j jH G  
for randomly chosen subgroup Hj is equivalent to the DDH 
assumption in the cyclic group Gj with |Gj| = n for j = 1, 2. 
Proof. We prove only the case where j = 1; the proof for j = 2 is 
similar. Suppose that one can solve the subgroup decision 
problem of group 2

1G  for a randomly chosen subgroup with 
non-negligible probability. Suppose that an instance (u, v,     
y, z) 4

1G  of DDHP in G1 is given. We consider a subgroup 

1 ( , )a bH u v    of 2
1G  for randomly chosen *, na b Z  so 

that H1 can be considered as a randomly chosen subgroup of 
2

1 .G  Now, consider a tuple 2
1 .( , )a by z G  w  We see that 

the following hold: 
1) 1,Hw  

2) ( , ) ( , ) ,y z u v  

3) (u, v, y, z) is a DDH tuple in G1. 

By solving the subgroup decision problem of 2
1G for the 

randomly given subgroup 1 ( , )a bH u v    and ( , )a by z w  
2

1 ,G  one can correctly decide whether (u, v, y, z) is a DDH 
tuple in G1. Therefore, we see that one can solve the DDHP in 
G1 by using a solver of the subgroup decision problem of 2

1 .G  
For the proof of the converse, suppose that the DDHP in G1 is 
solvable with non-negligible probability. We consider the 
subgroup decision problem of 2

1G  for 2
1 1, ) (H u v G   

and 2
1( , ) .y z G  We see that the following are equivalent for 
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randomly chosen * :na Z  
1) ( , , , )a a a au v y z  is a DDH tuple in G1, 

2) 1( ) ,,a ay z H  

3) 1( , ) .y z H  

By solving the DDHP in G1 for the random instance 
( , , , ),a a a au v y z  one can solve the given instance of the 
subgroup decision problem of 2

1 .G  Therefore, we see that one 
can solve the subgroup decision problem of 2

1G by using a 
solver of the DDHP in G1.                           ■ 

Now, by the results of Theorems 1–3, we see that our 
construction using the pairing 1 2ˆ : Te G G G  , where Gj = 

 jg and 1 2 ,j tG n p p p  Λ  is IND-CPA secure if pi is 

large enough to guarantee the DDH assumption on the cyclic 

group ,
i

i

n p
j p jG g    for all i = 1, 2, … , t and j = 1, 2. 

4. Selection of Parameters for Current Security Level  

For the current security level (that is, 112-bit security until 

the year 2030 [3], [4]), it is required that  1kq n λ is of 

2,048 bits for the pairing 1 2ˆ : Te G G G  with |G1| = |G2| = 

|GT| = n and embedding degree k. Recall that G2 is a subgroup 

of an elliptic curve group over the finite field Fq, and GT is a 

subgroup of the multiplicative group *
kq

F . Because G1 is a 

subgroup of the elliptic curve group E(Fq), it is assumed that 

log log .n q  We can expand the message size to t times 

larger than the BGN cryptosystem by using |Gi| = p1p2…pt. 

According to reports [3], [4], to guarantee the DDH 

assumption on Gi until the year 2030, it is recommended as  

log pi ~ 224. Table 4 suggests the suitable parameters of our 

construction for a 112-bit security level. 

According to Table 1, for a 112-bit security level, using the 

embedding degree as k = 1, 2 expands the message by up to 

nine times. We note that the ciphertexts belong to either 
2 2

1 2G G  or 4 4( ) .kT q
G F  Therefore, the bit-size of ciphertext 

in our scheme is at most 16,384. 
Table 5 presents selection parameters for a 112-bit security 

level in Freeman’s construction using prime product pairing [5]. 
In the prime case as in Table 2, a relatively small q can be used 
to encrypt a message. However, expanding the size of a  
 

Table 4. Selecting parameters for 112-bit security. 

k 1 2 4 6 12 

log q 4,096 2,048 1,024 683 342 

log n 2,048 2,048 1,024 683 342 

t 9 9 4 3 1 

 

Table 5. Prime (n) order case of 112-bit security. 

k 1 2 4 6 12 

log q 2,048 1,024 512 342 224 

log n 224 224 224 224 224 

 

 
message as much as up to t times by using the naive approach 
of direct CRT requires t implementations of the initial scheme, 
which makes it impractical for large t, such as t = 9. In 
particular, for any choice of embedding degree, we see that the 

ciphertext after Eval× is an element in    3694 ,kT q
G F  

which means that its bit-size is about 73,728. We also note that 
this is 4.5 times larger than our construction using composite 
pairing. 

In the case of k = 2, we need a pairing-friendly curve with 
ratio log q/log n = 1, which is very rare in the construction of 
the current pairing-friendly elliptic curves of composite order. 
Finding an efficient pairing-friendly elliptic curve of composite 
degree with rate log q/log n = 1 is an interesting subject of 
future research. Currently, selecting an embedding degree of  
k = 1 in our scheme is the most efficient solution, and it 
expands the size of a message by up to nine times that achieved 
by using Freeman’s product pairing of prime order. 

V. Conclusion 

In this paper, we presented how to expand the message size 
of the BGN cryptosystem using a product pairing of composite 
order. We use composite order not to provide the security of the 
scheme but to expand the message size. The security of our 
scheme is based on the DDH assumption on the subgroups of 
prime order of the underlying composite pairing group. We 
also presented how to select parameters that expand the 
message size more efficiently. 
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