• 제목/요약/키워드: BET specific surface area

검색결과 282건 처리시간 0.029초

칼륨 및 칼슘 이온으로 치환된 제올라이트의 대기오염물질 흡착 성능 평가 (Evaluation of Air Pollutant Adsorption Performance of Potassium and Calcium Ion-Exchanged Zeolite)

  • 이예환;김성수
    • 공업화학
    • /
    • 제34권3호
    • /
    • pp.313-317
    • /
    • 2023
  • 본 연구에서는 이온교환 공정에서 사용된 제올라이트의 재이용을 위해 물리화학적 특성 분석 및 대기오염물질(VOCs, SO2, CO2) 흡착 성능을 평가하였다. SEM 및 XRD 분석을 통해 사용된 제올라이트의 표면 특성을 확인하였으며, XRF 분석을 통해 조성, BET 분석을 통해 비표면적을 측정하였다. 사용된 제올라이트의 표면 특성 변화는 없었지만 칼륨 및 칼슘의 함량이 증가하고 비표면적이 감소하였다. 사용된 제올라이트의 톨루엔, 황산화물, 이산화탄소 흡착 성능 평가를 수행하였으며, 기존 제올라이트 대비 성능이 증진됨을 확인하였다. 특히 톨루엔, 황산화물에 대해서는 흡착량이 각각 2.6배, 2.3배 증가하였다. 이는 사용된 제올라이트 조성 변화에 따라 각각 중합반응 증진, 염기점 증가에 의한 것으로 판단된다.

도금전해액의 종류에 따른 수지상 구리 분말의 형상 및 표면적 특성 (Effect of Electrolyte Type on Shape and Surface Area Characteristics of Dendritic Cu Powder)

  • 박다정;박채민;강남현;이규환
    • 한국표면공학회지
    • /
    • 제49권5호
    • /
    • pp.416-422
    • /
    • 2016
  • We have investigated the effects of applied potential, deposition time and electrolyte types on shapes and physical properties of Cu dendrites by potentiostatic electrodeposition. Finer shape of dendrites was observed at less cathodic potential by 100mV than at the limiting current, due to 'effective overpotential'. The shape of copper dendrite is related to the deposition time, too. The dendrite depositing for 10 min showed the finest shape. The finer dendrite has the less apparent density and the larger specific surface area. Dendrite from chloride solution has the lowest density and the largest surface area among three plating solutions, sulfate, chloride and pyrophosphate.

자발적 환원반응에 의한 음이온 교환막 수전해용 Pt-Ni 나노 촉매 제조 및 특성 (Preparation and Characterization of Pt-Ni Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis by Spontaneous Reduction Reaction)

  • 장붕비;이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제33권3호
    • /
    • pp.202-208
    • /
    • 2022
  • Pt-Ni nanocatalysts were loaded on carbon black by spontaneous reduction reaction of platinum (II) acetylacetonate and nickel (II) acetylacetonate, and they were characterized by transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), energy dispersive x-ray analyzer (EDS), BET surface area and fuel cell test station. The distribution of the Pt and Ni nanoparticles was observed by TEM, and the loading weight of Pt-Ni nanocatalysts on the carbon black was measured by TGA. The elemental ratio of Pt and Ni was estimated by EDS. It was found that the loading weight of Pt-Ni nanoparticles was 5.54 wt%, and the elemental ratio of Pt and Ni was 0.48:0.35. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

염화아연(ZnCl2) 부활법에 의해 제조한 목재 활성탄의 특성 (Characterization of Activated Carbon from Wood by ZnCl2)

  • 권구중;권성민;김남훈
    • Journal of Forest and Environmental Science
    • /
    • 제23권1호
    • /
    • pp.51-55
    • /
    • 2007
  • 본 연구는 염화아연을 이용한 화학약품 부활법으로 잣나무재 활성탄을 제조하기 위해 원료에 대한 화학약품부활제 비율의 영향을 검토하였다. 염화아연과 혼합한 목분은 질소분위기에서 상온에서 $600^{\circ}C$까지 1시간 열처리하여 중량변화를 측정하였다. 이 처리과정에 있어 활성탄 내부에 다양한 공극크기 분포와 표면특성이 확인되었다. 즉, 최대 BET 표면적과 총 공극체적은 목분에 대하여 염화아연의 비율이 5배인 경우였으며, 각각 그 값은 $1468m^2/g$와 1.74 cc/g이었다. 결론적으로 활성탄 제조시 화학약품부활제의 비율에 의해 활성탄의 특성이 뚜렷하게 차이가 나타나는 것이 확인되었다.

  • PDF

활성탄소섬유의 기공구조가 기계적 특성에 미치는 영향 (Effect of Pore Structure of Activated Carbon Fiber on Mechanical Properties)

  • 최윤정;이영석;임지선
    • 공업화학
    • /
    • 제29권3호
    • /
    • pp.318-324
    • /
    • 2018
  • 본 연구에서는 물리적 활성화법인 수증기 활성화법을 이용하여 PAN (Polyacrylonitrile)계 활성탄소섬유를 제조하였다. 활성화는 온도와 시간을 변수로 하였으며, 활성화 온도(700, 750, $800^{\circ}C$)에 도달하였을 때 200 mL/min의 수증기 유량의 조건으로 PAN 탄소섬유의 활성화를 진행하였다. 제조된 활성탄소섬유의 기공구조를 분석하기 위하여 질소가스의 흡 탈 등온선을 통한 비표면적($S_{BET}$) 측정과 표면분석을 위한 AFM 분석을 실시하였다. 또한 인장시험을 실시하여 활성화 결과 형성된 기공구조가 섬유의 기계적 특성에 미치는 영향을 고찰하였다. 그 결과, 활성화 후 섬유의 비표면적($S_{BET}$)은 $448{\sim}902m^2/g$의 값을 나타냈으며, 인장강도는 58.16~84.92%, 탄성계수는 69.81~83.89%의 감소를 보였다.

Preparation and Characterization of Carbon Nanotubes-Based Composite Electrodes for Electric Double Layer Capacitors

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1523-1526
    • /
    • 2012
  • In this work, we prepared activated multi-walled carbon nanotubes/polyacrylonitrile (A-MWCNTs/C) composites by film casting and activation method. Electrochemical properties of the composites were investigated in terms of serving as MWCNTs-based electrode materials for electric double layer capacitors (EDLCs). As a result, the A-MWCNTs/C composites had much higher BET specific surface area, and pore volume, and lower volume ratio of micropores than those of pristine MWCNTs/PAN ones. Furthermore, some functional groups were added on the surface of the A-MWCNTs/C composites. The specific capacitance of the A-MWCNTs/C composites was more than 4.5 times that of the pristine ones at 0.1 V discharging voltage owing to the changes of the structure and surface characteristics of the MWCNTs by activation process.

침상구조의 루틸상 TiO2 초미분체를 이용한 광촉매 반응에 대한 연구 (Study on Photocatalytic Reaction Using Acicular TiO2 Rutile Powder)

  • 황두선;구숙경;김광수;민형섭;이은구;김선재
    • 한국재료학회지
    • /
    • 제12권8호
    • /
    • pp.641-649
    • /
    • 2002
  • The redox properties of a homogeneously-precipitated $TiO_2$ rutile powder with a BET surface area of ~$200 m^2$/g, consisting of an acicular primary particle, were characterized using photocatalytic reaction in aqueous 4-chlorophenol, Cu-EDTA and Pb-EDTA solutions under ultraviolet irradiation, compared to those of commercial P-25 X$200 m_2$ powder with a spherical primary particle as well as home-made anatase $TiO_2$ powder with ~$200 m^2$/g BET surface area. Here, the anatase powder also includes mainly the primary particles very similar to the acicular shapes of the rutile $TiO_2$ powder. The rutile powder showed the fastest decomposition rate and the largest amount in the photoredor, compared with the anatase or P-25 powder, while the anatase powder unexpectedly showed the slowest rate and the smallest amount in the same experiments regardless of almost the same surface area. From results, the excellent photoredox abilities of this rutile powder appears to be due to specific powder preparation method, like a homogeneous precipitation leading to direct crystallization from the solution, regardless of their crystalline structures even when having the similar particle shape and surface area.

Li-ion battery용 음극재료인 $SnO_2$의 합성법의 차이에 따른 음극 성능비교 (Comparing the methods of making $SnO_2$ nanomaterials with and without templates of anode material for Li-ion battery)

  • 심영선;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.132.2-132.2
    • /
    • 2010
  • Mesoporous tinoxide ($SnO_2$) as anode materials for Li-ion battery were prepared by hydrothermal method and templating method using SBA-15 as template. And electrochemical properties of $SnO_2$ electrode were investigated with cyclic voltammogram (CV). The morphology and structures of $SnO_2$ were characterized by transmission electron microscopy (TEM) and X-ray diffractometer (XRD), respectively. The specific surface area was defined by $N_2$ adsorption with BET(Brunauer-Emmett-Teller) method. As a result, the surface area of mesoporous $SnO_2$ which was made from templating method is higher than the case of using hydrothermal method. In addition, in anodic performance, mesoporous $SnO_2$ which is prepared by templating method showed higher charge-discharge capasity compared to hydrothermal method and exhibited excellent stability over the entire cycle number. It was indicated that electrochemical performances of mesoporous $SnO_2$mainly affected to the structural features, such as specific surface area and porosity.

  • PDF

폭쇄처리 목재의 비표면적변화 (Changes of Specific Surface Area of the Steam Exploded Wood)

  • 양재경;김현정;이원희
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권1호
    • /
    • pp.54-60
    • /
    • 1995
  • This paper reports on the changes of equilibrium moisture contents and specific surface areas of Poplar wood(Populus euramericana) for various steam explosion treatments. Equilibrium moisture contents(EMC) and specific surfaces of steam exploded woods were measured under the moisture adsorption course at 25$^{\circ}C$, and compared with those of other materials and wood meals. The EMCs of steam exploded wood meal were 1~5% less in comparison with that of wood meal. In the case of delignified steam exploded wood meal and delignified wood meal, the same tendency was appeared too. But absolute values of EMCs for delignified wood meals were larger than those of the wood meal. For the changes of EMC by the steam exploded conditions, the EMC decreased with the increase of the steam explosion pressure. On the other hand, specific surface areas were calculated from BET plots based on amounts of monomolecular vapor adsorption of various wood meals. Specific surface areas of the wood meal and delignified wood meal were 90~145, 34~90($m^2/g$) respectively, and which were greater in comparison with those of steam exploded wood meals and delignified steam exploded wood meals. From these results, it is considered that the amount of water vapor adsorption was decreased by the increase of the crystallinity, effect of heat treatment, and coating by melted lignin in during the steam explosion.

  • PDF

나노 탄소재료를 이용한 에너지 저장형 슈퍼커패시터용 전극 제조 (The study of electrode for energy storaging at supercapacitor system using nano carbon fiber material)

  • 황성익;최원경;;;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.683-686
    • /
    • 2004
  • In recent years, the supercapacitor and hybrid capacitor have related with substitutional energy source focused of many scientists because of their usage in power sources for electric vehicles, computers and other electric devices. The storage energy of electrical charge is based on electrostatic interactions in the electric double layer at the electrode/electrolyte interface, resulting in high rate capability and long cycle performance compared with batteries based on Faradaic electrode reactions. So we have been considered to carbon nanofibers as the ideal material for supercapacitors due to their high utilization of specific surface area, good conductivity, chemical stability and other advantages. In this work, we aimed to find out that the capacitance have increased because of electrochemical capacitance to provide by carbon nanofibers. Also carbon nanofibers based on chemical method and water treatment have been resulted larger capacitances and also exhibit better electrochemical behaviors about 15% than before of nontreated state. And also optical observations with treated and nontrteated carbon nanofibers discussed by the TEM, SEM, EDX, BET works and specific surface area analyzer. Their results also focused on the surface area of electrode and electrical capacitance was also improved by the effect of surface treatments.

  • PDF