Browse > Article
http://dx.doi.org/10.3740/MRSK.2002.12.8.641

Study on Photocatalytic Reaction Using Acicular TiO2 Rutile Powder  

Hwang, Doo-Sun (세종대학교 나노기술연구소/나노공학과)
Ku, Suk-Kyeong (세종대학교 나노기술연구소/나노공학과)
Kim, Kwang-Su (조선대학교 재료공학과)
Min, Hyung-Seob (세종대학교 나노기술연구소/나노공학과)
Lee, Eun-Gu (조선대학교 재료공학과)
Kim, Sun-Jae (세종대학교 나노기술연구소/나노공학과)
Publication Information
Korean Journal of Materials Research / v.12, no.8, 2002 , pp. 641-649 More about this Journal
Abstract
The redox properties of a homogeneously-precipitated $TiO_2$ rutile powder with a BET surface area of ~$200 m^2$/g, consisting of an acicular primary particle, were characterized using photocatalytic reaction in aqueous 4-chlorophenol, Cu-EDTA and Pb-EDTA solutions under ultraviolet irradiation, compared to those of commercial P-25 X$200 m_2$ powder with a spherical primary particle as well as home-made anatase $TiO_2$ powder with ~$200 m^2$/g BET surface area. Here, the anatase powder also includes mainly the primary particles very similar to the acicular shapes of the rutile $TiO_2$ powder. The rutile powder showed the fastest decomposition rate and the largest amount in the photoredor, compared with the anatase or P-25 powder, while the anatase powder unexpectedly showed the slowest rate and the smallest amount in the same experiments regardless of almost the same surface area. From results, the excellent photoredox abilities of this rutile powder appears to be due to specific powder preparation method, like a homogeneous precipitation leading to direct crystallization from the solution, regardless of their crystalline structures even when having the similar particle shape and surface area.
Keywords
ultrafine $TiO_2$powder; rutile phase; Photocatalytic reaction; 4- Chlorophenol; Cu- EthyleneDiamine-Tetraacetic Acid (EDTA); Pb-EDTA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.J. Kim, S.D. Park, C.J. Jeon, Y.H. Cho, C.K. Rhee, W.W. Kim and E.G. Lee, J. Sol-Gel Sci. and Tech., 22(1/2), 63 (2001)   DOI   ScienceOn
2 S.J. Kim, S.D. Park, Y.H. Jeong and S. Park, J. Am. Ceram. Soc., 82(4), 927 (1999)   DOI   ScienceOn
3 S.J. Kim, S.D. Park, K.H. Kim, Y.H. Jeong and I.H. Kuk, United States Patent No.6001326 (1999)
4 J.A. Ayres, Decontamination of Nuclear Reactors and Equipment, (Ronald Press : New York, 1970), p.6
5 S.D. Park, Y.H. Cho, W.W. Kim and S.J. Kim, J. Solid State Chem., 146, 230 (1999)   DOI   ScienceOn
6 D.-S. Seo, J.-K. Lee and H. Kim, J. Kor. Ceram. Soc., 37(7), 700 (2000)   과학기술학회마을
7 T. Sugimoto, K. Sakata and A. Muramatsu, J. Colloids & Interface Sci., 159, 372 (1993)   DOI   ScienceOn
8 M. Gapal, W.J. Moberly Chan and L.C. De Jonghe, J. Mater.Sci., 32, 6001 (1997)   DOI
9 Andrew Mills, Phillip Sawunyma, J. Photochem. Photobiol. A, 84, 305 (1994)   DOI   ScienceOn
10 Xiaojing Li, Jerry, W. Cubbage, William S. Jenks, J. Org. Chem., 64, 8509 (1999)   DOI   ScienceOn
11 L. Loy and E.E. Wolf, Solar Energy, 34(6), 455 (1985)   DOI   ScienceOn
12 S.J. Kim, S.D. Park, C.K. Rhee, W.W. Kim and S. Park, Scri. Mat., 44, 1299 (2001)   DOI   ScienceOn
13 Dingwang Chen, A jay K. Ray, Appl. Catal. B, 23, 143 (1999)   DOI   ScienceOn
14 Istvan Ilisz, Zsuzsanna Laszlo, Andras Dombi, Appl. Catal. A, 180, 25 (1999)   DOI   ScienceOn
15 M.Z. Hoffmann, D.R. Prasad, G. Jones II and V. Malba, J.Am.Chem.Soc., 105, 6360 (1983)   DOI
16 Xiaojing Li, Jerry W. Cubbage, William S. Jenks, J.Org.Chem., 64, 8525 (1999)   DOI   ScienceOn
17 G.A. Somorjai, Chemistry in two dimensions: Surface (Cornel University Press, Ithaca, U.S.A., 1981). p551