• Title/Summary/Keyword: BET 표면적

Search Result 197, Processing Time 0.278 seconds

Synthesis of Chromium Nitride and Evaluation of its Catalytic Property (크롬 질화물(CrN)의 합성 및 촉매특성에 관한 연구)

  • Lee, Yong-Jin;Kwon, Heock-Hoi
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.451-457
    • /
    • 2006
  • We synthesized phase pure CrN having surface areas up to $47m^2/g$ starting from $CrCl_{3}$ with $NH_{3}$. Thermal Gravimetric Analysis coupled with X-ray diffraction was carried out to identify solid state transition temperatures and the phase after each transition. In addition, the BET surface areas, pore size distributions, and crystalline diameters for the synthesized materials were analyzed. Space velocity influenced a little to the surface areas of the prepared materials, while heating rate did not. We believe it is due to the fast removal of reaction by-products from the system. Temperature programmed reduction results revealed that the CrN was hardly passivated by 1% $O_{2}$. Molecular nitrogen was detected from CrN at 700 and $950^{\circ}C$, which may be from lattice nitrogen. In temperature programmed oxidation with heating rate of 10 K/min in flowing air, oxidation started at or higher than $300^{\circ}C$ and resulting $Cr_{2}O_{3}$ phase was observed with XRD at around $800^{\circ}C$. However the oxidation was not completed even at $900^{\circ}C$. CrN catalysts were highly active for n-butane dehydrogenation reaction. Their activity is even higher than that of a commercial $Pt-Sn/Al_{2}O_{3}$ dehydrogenation catalyst in terms of volumetric reaction rate. However, CrN was not active in pyridine hydrodenitrogenation.

Synthesis of High Affinity Anion Exchanger Using Ultrafine Fibrous PPmb Nonwoven Fabric by Co60 Irradiation Method (방사선 조사에 의한 초극세 폴리프로필렌 섬유부직포를 이용한 고효율 음이온교환체의 합성)

  • Choi, Kuk-Jong;Lee, Choul-Ho;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.509-515
    • /
    • 2008
  • The aminated polypropylene melt blown ion exchange fibers were synthesized with acrylic acid monomer onto polypropylene melt blown fibers by radiation-induced polymerization and subsequent amination. Degree of grafting was increased with increasing the acrylic acid monomer concentration and total dose. The highest degree of grafting was obtained 140% at a monomer concentration of 20 v/v% acrylic acid and total dose of 4 kGy. Optimum condition of Mohr's salt was 5.0 $\times10^{-3}$ M. Degree of amination was increased with increasing degree of grafting. Water content was about 1.5 times higher than that of trunk polymer. The maximum ion-exchange capacity was 7.3 meq/g which was 2$\sim$3 times higher than a commercial ion exchange fiber. The average pore size was decreased and BET surface area was increased in order of PPmb, PPmb- g- AAc and APPmb- g- AAc. The average pore size and BET surface area of synthesised fibers were $366.1\;{\AA},\;3.71m^2/g,\;143.3\;{\AA},\;4.94m^2/g,\;40.97\;{\AA},\;8.98m^2/g$, respectively.

Comparison of $La_{1-x}Ca_{x}MnO_{3}$ Properties by Glycine Nitrate Process and Solid State method for GMR sensor (CMR Sensor 제조를 위한 자발착화 연소합성법(GNP)과 고상반응법으로 제조한 $La_{1-x}Ca_{x}MnO_{3}$ 분말의 물성 비교)

  • Kang, Young-Chul;Park, Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.882-884
    • /
    • 1999
  • 금속 다층박막과 미세입상 합금박막에서 발견된 Giant Magnetoresistance(GMR)현상에 고무되어 최근에는 50년대에 밝혀졌던 산화물 자기저항 재료에 관하여 새롭게 연구하고 있다. Perovskite 구조를 가지는 $La_{1-x}Ca_{x}MnO_{3}$ 박막에서 큰 자기저항을 얻었으며 이를 Colossal Magentoresistance (CMR)이라 한다. 본 연구에서는 $La_{1-x}Ca_{x}MnO_{3}$ 분말을 고상반응법과 자발착화연소 합성법(Glycine-Nitrate Process)으로 각각 제조하였으며 비교 분석하였다. TGA을 이용하여 불순물과 미반응 물질을 확인하여 적당한 하소온도를 결정하였고 XRD를 이용하여 결정상을 분석하였다. Dilatometer를 이용해 $1400^{\circ}C$까지의 열팽창율을 측정하였다. BET로 비 표면적을 비교하였으며, 주사전자현미경(SEM)으로 각각 제조된 분말의 입자상태와 입자성장을 확인하였다. GNP법으로 합성한 경우가 고상반응법을 이용한 경우보다 입자의 크기가 submicron 단위로 미세하고 비표면적도 수배 컸으며, 고순도의 perovskite 구조를 갖는 $La_{1-x}Ca_{x}MnO_{3}$ 분말을 얻을 수 있었다.

  • PDF

Study of CO2 Adsorption Characteristics on Acid Treated and LiOH Impregnated Activated Carbons (산 처리 및 LiOH 첨착 활성탄에서 이산화탄소의 흡착 특성에 대한 연구)

  • Han, Jae Uk;Kim, Dae Jung;Kang, Min;Kim, Jin Won;Kim, Ji Man;Yie, Jae Eui
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.312-316
    • /
    • 2005
  • Adsorption characteristics of $CO_2$ on activated carbons were evaluated using dynamic adsorption method in a fixed bed with acid treatment, LiOH impregnation and water vapor supply. Physical and chemical properties of the activated carbons were measured using SEM, EDS, nitrogen adsorption, FTIR and XRD. Nitric acid treatment led to the decrease in BET surface area and the increase in oxygen content of virgin activated carbon, and it produced a new functional group that included nitrogen. For the reduction of BET surface area by LiOH impregnation, the nitric acid treated activated carbon (NAC) was less than the virgin activated carbon (AC). Large particles of LiOH were present on the carbon surface when the content of LiOH was over 2 wt%. The adsorbed amount of $CO_2$ on activated carbon in a fixed bed increased with the acid treatment, LiOH impregnation and water vapor supply. The XRD results indicated that LiOH was converted to $Li_2CO_3$ after the adsorption of $CO_2$ on LiOH precursor.

Surface analysis of rayon-based carbon nanofibers and activated carbon fibers (레이온을 이용한 카본나노섬유와 활성카본섬유의 표면 특성분석)

  • Kim, Youn Jung;Ryu, Sang Hoon;Lim, Woo Taik;Choi, Sik Young
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.296-301
    • /
    • 2007
  • Carbon nanofibers (CNFs) are non-microporous materials with a high surface area ($100{\sim}200m^2/g$) and high purity. Therefore, the material has a high potential for use as catalyst support. Activated carbon fibers (ACFs) are of increasing concern with regard to the levels of toxic air pollutants emitted from high-technology industry. Rayon-based CNFs and ACFs was subjected to thermal oxidation under a wide variety of temperature and air conditions to modify the surface properties. Rayon-based CNFs and ACFs were prepared by using thermal chemistry. CNFs were synthesized at temperatures above $600^{\circ}C$ in an air atmosphere and grew with increased temperature and air conditions. After heating at $800^{\circ}C$ for 72 hr, carbonized rayon with ACFs had $2,662m^2/g$ (BET) of surface area and $1.41cm^3/g$ of pore volume. The resulting ACFs had a 99% surface area in which pore size was 10 nm or less, and a 60 % surface area in which pore size was 2 nm or less.

Electrochemical Behaviors of Pt-Ru Catalysts on the Surface Treated Mesoporous Carbon Supports for Direct Methanol Fuel Cells (직접메탄올 연료전지용 표면처리된 중형기공 탄소지지체에 담지된 백금-루테늄 촉매의 전기화학적 거동)

  • Kim, Byung-Ju;Seo, Min-Kang;Choi, Kyeong-Eun;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.167-172
    • /
    • 2011
  • In this work, the effect of surface treatment on mesoporous carbons (MCs) supports was investigated by analyzing surface functional groups. MCs were prepared by a conventional templating method using mesoporous silica (SBA-15) for using catalyst supports in direct methanol fuel cells (DMFCs). The MCs were treated with different phosphoric acid ($H_3PO_4$) concentrations i.e., 0, 1, 3, 4, and 5 M at 343 K for 6 h. And then Pt-Ru was deposited onto surface treated MCs (H-MCs) by chemical reduction method. The characteristics of Pt-Ru catalysts deposited onto H-MCs were determined by specific surface area and pore size analyzer, X-ray diffraction, X-ray photoelectron, transmission electron microscopy, and inductive coupled plasma-mass spectrometer. The electrochemical properties of Pt-Ru/H-MCs catalysts were also analyzed by cyclic voltammetry experiments. From the results of surface analysis, an oxygen functional group was introduced to the surface of carbon supports. From the results, the H4M-MCs carbon supports surface treated with 4 M $H_3PO_4$ led to uniform dispersion of Pt-Ru onto H4M-MCs, resulting in enhancing the electro-catalytic activity of Pt-Ru catalysts.

A Study on the Surface and Antibacterial Properties for M(Cd, Cu)-Activated Carbon (M(Cd, Cu)-활성탄의 표면 특성과 항균성에 관한 연구)

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Myung-Kun
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.105-110
    • /
    • 1999
  • The studies on the adsorption properties and the antibacterial effects of the Cd and Cu-treated activated carbon were carried out. From the adsorption studies on the series of these metal-treated activated carbons, typical Type-I isotherm was observed. The surface areas of the treated carbon obtained from BET equation were in the range of $1101-1418m^2/g$ for Cd-AC and of $1084-1361m^2/g$ for Cu-AC. Using ${\alpha}_s$-plot, the micropore volumes and pore size distribution were obtained. From the SEM study, it is also observed that many of micropores in activated carbon are blocked by window blocking effect of metals after the impregnation. Finally, antibacterial effects of M-activated carbon against Escherichia coli was discussed. From the study, the area of antibacterial activity becomes larger with the increase of the amount of metal treated.

  • PDF

Synthesis of TiO2/active carbon composites via hydrothermal process and their photocatalytic performance (수열합성법에 의한 TiO2/active carbon 복합체의 제조 및 광촉매특성)

  • Kim, Dong Jin;Lee, Jin Hee;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.241-245
    • /
    • 2013
  • Granular bamboo-derived active carbons (AC) were impregnated (or coated) with $TiO_2$ nano crystalline powders. The photocatalytic activity of the $TiO_2$-impregnated active carbons ($TiO_2$/AC) were determined on the basis of the degradation rate of methylene-blue aqueous solution under UV irradiation. The active compounds of $TiO_2$ were impregnated onto the AC under moderate hydrothermal conditions (${\leq}200^{\circ}C$, pH 11). The mean size of $TiO_2$ particles calculated from BET surface area were found to be as 50 nm. The $TiO_2$ precipitates were coated on the cavities or pores on the surfaces of highly activated carbons. Since the hydrothermal process led to a lowering of the on-set temperature of the anatase-to-rutile transition of $TiO_2$ as low as $200^{\circ}C$, $TiO_2$ crystallites of a pure anatase or a mixed form with rutile were successfully coated on the AC depending on the synthesis temperatures.

$H_2S$ Adsorption Characteristics and Property Analyses of Activated Carbon Adsorbent Impregnated with Basic Solutions (염기성용액으로 첨착시킨 활성탄의 물성분석 및 $H_2S$ 흡착특성)

  • Lee, Suk-Ki;Yim, Chang-Sun;Park, Yeong-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1011-1016
    • /
    • 2010
  • The $H_2S$ adsorption characteristics and property analyses of granular activated carbon adsorbent impregnated with basic solution such as NaOH, KOH, and $(CH_2CH_2OH)_2NH$ were investigated. The concentrations of NaOH and KOH reagent ranged over 1 to 5 M, The concentration of $(CH_2CH_2OH)_2NH$ was in the range of 0.1 to 1 M. Adsorption temperature($25{\sim}45^{\circ}C$) and adsorbate ($H_2S$) concentration (18.23 mg/L) were applied. The experimental results showed that the BET surface area of activated carbon impregnated with KOH decreases from $1,050\;m^2/g$ to $750\;m^2/g$, and the acidity of activated carbon impregnated with NaOH decreases from 0.541 meq/g-AC to 0 meq/g-AC, as the concentration of basic solution increases, while the pH of impregnated activated carbon increased from 9.54 to 10.94 for three basic solutions. It was also found that the $H_2S$ adsorption equilibrium capacity of activated carbon impregnated with NaOH, KOH, $(CH_2CH_2OH)_2NH$ increased with increasing temperature and $H_2S$ adsorption equilibrium capacity of the activated carbon impregnated with diethanolamine was much higher than other cases. At adsorption temperature of $45^{\circ}C$, the $H_2S$ adsorption equilibrium capacity of impregnated activated carbon was 2.0~3.3 times lager than that of pure activated carbon.

Partial Oxidation of Methane to $H_2$ Over Pd/Ti-SPK and Pd/Zr-SPK Catalysts and Characterization (Pd/Ti-SPK과 Pd/Zr-SPK 촉매상에서 수소 생산을 위한 메탄의 부분산화반응과 촉매의 특성화)

  • Seo, Ho-Joon;Kang, Ung-Il
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.648-652
    • /
    • 2010
  • Catalytic activities of the partial oxidation of methane (POM) to hydrogen were investigated over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK in a fixed bed flow reactor (FBFR) under atmosphere, and the catalysts were characterized by BET, XPS, XRD. The BET surface areas, pore volume and pore width of Horvath-Kawaze, micro pore area and volume of t-plot of Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were $284m^2/g$, $0.233cm^3/g$, 3.9 nm, $30m^2/g$, $0.015cm^3/g$ and $396m^2/g$, $0.324cm^3/g$, 3.7nm, $119m^2/g$, $0.055cm^3/g$, repectively. The nitrogen adsorption isotherms were type IV with hysteresis. XPS showed that Si 2p and O 1s core electronlevels of Ti-SPK and Zr-SPK substituted Ti and Zr shifted to slightly lower binding energies than SPK. The oxidation states of Pd on the surface of catalysts were $Pd^0$ and $Pd^{+2}$. XRD patterns showed that crystal structures of fresh catalyst changed amorphous into crystal phase after reaction. The conversion and selectivity of POM to hydrogen over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were 77, 84% and 78, 72%, respectively, at 973 K, $CH_4/O_2$ = 2, GHSV = $8.4{\times}10^4mL/g_{cat}{\cdot}h$ and were kept constant even after 3 days in stream. These results confirm superior activity, thermal stability, and physicochemical properties of catalyst in POM to hydrogen.