Browse > Article

Synthesis of High Affinity Anion Exchanger Using Ultrafine Fibrous PPmb Nonwoven Fabric by Co60 Irradiation Method  

Choi, Kuk-Jong (Department of Chemical Engineering, College of Engineering, Chungnam National University)
Lee, Choul-Ho (Department of Chemical Engineering, Kongju National University)
Hwang, Taek-Sung (Department of Chemical Engineering, College of Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.32, no.6, 2008 , pp. 509-515 More about this Journal
Abstract
The aminated polypropylene melt blown ion exchange fibers were synthesized with acrylic acid monomer onto polypropylene melt blown fibers by radiation-induced polymerization and subsequent amination. Degree of grafting was increased with increasing the acrylic acid monomer concentration and total dose. The highest degree of grafting was obtained 140% at a monomer concentration of 20 v/v% acrylic acid and total dose of 4 kGy. Optimum condition of Mohr's salt was 5.0 $\times10^{-3}$ M. Degree of amination was increased with increasing degree of grafting. Water content was about 1.5 times higher than that of trunk polymer. The maximum ion-exchange capacity was 7.3 meq/g which was 2$\sim$3 times higher than a commercial ion exchange fiber. The average pore size was decreased and BET surface area was increased in order of PPmb, PPmb- g- AAc and APPmb- g- AAc. The average pore size and BET surface area of synthesised fibers were $366.1\;{\AA},\;3.71m^2/g,\;143.3\;{\AA},\;4.94m^2/g,\;40.97\;{\AA},\;8.98m^2/g$, respectively.
Keywords
radiation-induced polymerization; polypropylene; amination; ultra fine ion-exchange fiber;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 V. A. Wente, E. L. Boone, and C. D. Fluharty, Manufacture of Superfine Organic Fibers, Naval Research Laboratory, Report No. 4364 (1954)
2 B. M. Novak, Adv. Mater., 5, 422 (1993)   DOI   ScienceOn
3 D. H. Lee, S. I. Kim, M. G. Lee, K. R. Kim, S. H. Lee, and H. S. Chung, Appl. Chem. Kor., 2, 881 (1998)
4 T. S. Hwang, J. H. Lee, and M. J. Lee, Polymer(Korea), 25, 451 (2001)
5 H. J. Pack and C. K. Na, J. Colloid Interf. Sci., 301, 46 (2006)   DOI   ScienceOn
6 H. Borcherding, H. G. Hicke, D. Jorcke, and M. Ulbricht, Desalination, 149, 297 (2002)   DOI
7 E. Trommsdorff, H. Kohle, and P. Lagally, Makromol. Chem., 1, 169 (1948)   DOI
8 Anderson, A. Richard, Sokolowski, and C. Robert, U. S. Patent 4,100,324 (1978)
9 F. Santoso, W. Albercht, M. Schroeter, Th. Weigel, D. Paul, and R. Schomacker, J. Membrane Sci., 223, 171 (2003)   DOI   ScienceOn
10 M. Dever, L. C. Wadsworth, and Y. C. Lee, Proc. INDA Tech. Symp., 18, 1 (1990)
11 Y. K. Kim, D. H. Riu, S. R. Kim, and B. I. Kim, Mater. Lett., 54, 229 (2002)   DOI
12 Butin, R. Robert, J. P. Keller, and J. W. Harding, U.S. Patent 3,849,241 (1974)
13 V. A. Wente, Ind. Eng. Chem., 48, 1342 (1956)   DOI
14 B. C. Pan, Y. Xiong, Q. Su, A. M. Li, J. L. Chen, and Q. X. Zhang, Chemosphere, 51, 953 (2003)   DOI   ScienceOn
15 T. Kawai, K. Saito, K. Sugita, T. Kawakami, J. Kanno, A. Katakai, N. Seko, and T. Sugo, Radiat. Phys. Chem., 59, 405 (2000)   DOI   ScienceOn
16 Kokai, Japan Patent 55-142757 (1979)
17 L. C. Wadsworth and A. M. Jones, Nonwovens Ind., 17, 44 (1986)
18 L. C. Wadsworth and A. M. Jones, Fibers Ind., 17, 44 (1986)
19 L. C. Wadsworth, Y. C. Lee, and S. D. Barbuza, J. Fibers Res., 2, 43 (1990)
20 N. Hein, D. V. Phu, N. N. Duy, and H. T. Huy, Nucl. Instrum. Methods B, 236, 606 (2005)   DOI   ScienceOn