• Title/Summary/Keyword: BER Performance Improvement

Search Result 238, Processing Time 0.041 seconds

Performance Improvement of the Smart Antenna Placed in Wi-Fi Access Point (와이파이AP 용 FFT 전단 스마트안테나의 성능 개선)

  • Hong, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2437-2442
    • /
    • 2013
  • OFDM Wi-Fi AP is susceptible to the co-channel interference. As a countermeasure, the insertion of a smart has been addressed. Despite of the guaranteed efficiency, the complexity of the post-FFT algorithm often keeps itself from being selected as the countermeasure. Instead, simply constructed pre-FFT smart antenna of which the algorithm is based on the received signal covariance matrix is commonly used and the mathematical modeling of it has been deployed. Computer simulations evaluating the improved BER characteristics of the proposed pre-FFT using the covariance matrix of channel estimator output have been carried out. It has been demonstrated that channel matrix output based smart antenna is superior to that using received signal covariance matrix.

Performance Improvement of Spread Spectrum Satellite Communication System in the Presence of Jamming Interference (확산 스펙트럼 위성 통신 시스템의 재밍간섭시의 성능 개선)

  • 김기근;고재덕;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.226-237
    • /
    • 1998
  • In recent SATCOM systems, transparent transponders are widely used. The transponder is, however, the most vulnerable part in SATCOM systems against jamming interference. All signals within the transponder bandwidth are frequency-converted and retransmitted with IM(intermodulation) products. In this paper, the method is proposed that makes the SJR(Signal-to-Jammer ratio) better. The bandwidth spreading of the user signal can reduce the jammers effects. The geostationary satellite system is modeled to simulate and to certificate the capability of suppression of jammers by DSSS. If signal is partially-overlapped by jammer and PG(processing gain) is 16.9 [dB] for 2ASK jammer and about 16.8 [dB] for QPSK jammer, when BER is $10^{-3}$.

  • PDF

An Efficient Fading Estimation and Compensation Techniques for Transmission of Trellis Coded 16 QAM in Wireless Communication Channel (무선통신채널에서 트렐리스 부호화한 16 QAM 신호전송을 위한 효율적인 페이딩 추정.보상방안)

  • 김순영;김정수;이광재;이문호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.855-865
    • /
    • 1999
  • This paper presents the improvement of BER performance using fading compensation method for 16 QAM-TCM to reduce the effects of multi-path fading in mobile radio environments. We propose the multi-pilot symbol aided fading compensation technique using Gausian interpolation method for inter-symbol interference or fading distortion occured in frequency selective fading channel. The proposed system is combined coding and modulation scheme for improving the reliability of a digital transmission system without increasing the transmitted power or the required bandwidth. In the fading compensation, the pilot symbols from a known sequence is multiplexed into the data symbols at regular intervals to from a frames for transmission. And we use a modified bit reversal block interleaver to randomize burst errors. The results show that significant improvements in the bit-error rate performances can be achieved by the proposed techniques.

  • PDF

Error Resilience in Image Transmission Using LVQ and Turbo Coding

  • Hwang, Junghyeun;Joo, Sanghyun;Kikuchi, Hisakazu;Sasaki, Shigenobu;Muramatsu, Shogo;Shin, JaeHo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.478-481
    • /
    • 2000
  • In this paper, we propose a joint coding system for still images using source coding and powerful error correcting code schemes. Our system comprises an LVQ (lattice vector quantization) source coding for wavelet transformed images and turbo coding for channel coding. The parameters of the image encoder and channel encoder have been optimized for an n-D (dimension) cubic lattice (D$_{n}$, Z$_{n}$), parallel concatenation fur two simple RSC (recursive systematic convolutional code) and an interleaver. For decoding the received image in the case of the AWGN (additive white gaussian noise) channel, we used an iterative joint source-channel decoding algorithm for a SISO (soft-input soft-output) MAP (maximum a posteriori) module. The performance of transmission system has been evaluated in the PSNR, BER and iteration times. A very small degradation of the PSNR and an improvement in BER were compared to a system without joint source-channel decoding at the input of the receiver.ver.

  • PDF

Multi-User Receiver of an MC-CDMA System Using a RBF Network (RBF Network를 이용한 다중반송파 코드분할 다중접속 시스템에서의 다중사용자 수신기)

  • 고균병;최수용;강창언;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.885-892
    • /
    • 2000
  • A multi-used detector(MUD) using a radial basis function(RBF) network is proposed in a multicarrier-code division multiple access (MC-CDMA) system. In the proposed scheme, a RBF network is connected to the frequency domain in order to effectively utilize the frequency diversity. Simulations have been performed over the frequency selective and multipath fading channel. From these simulations, the proposed receiver is verified to be used for making the performance improvement in combating near-far effects and increasing the number of active users. The system capacity is increaed about 1.8 times at a BER of $10^{-3}$ under a single cell when the proposed scheme is compared with MUD using a parallel interference canceller(PIC).

  • PDF

32×32 Full-Rate Massive MIMO Using Quasi-Orthogonal Space-Time Block Code (QOSTBC) (준직교 공간시간 블록부호를 적용한 32×32 전율 대규모 MIMO 시스템)

  • Winn, Khin Zar Chi;Chung, Yeon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.507-513
    • /
    • 2015
  • In this paper, we present the bit-error rate (BER) performance of quasi-orthogonal space-time block code (QOSTBC) massive multiple-input multiple-output (MIMO) system employing up to 32 transmit and receive antennas. The QOSTBC, due to its advantages in transmission rate and decoding complexity, is an important transmit diversity scheme for more than 2 transmit antennas. As massive MIMO implies very large number of antennas, practically at least more than 15 antennas, a different number of transmit and receive antennas (i.e. $2{\times}2$, $4{\times}4$, $8{\times}8$, $16{\times}16$ and $32{\times}32$) using QOSTBC for the massive MIMO system are considered. The BER performance of the massive MIMO with antennas up to $32{\times}32$ using BPSK modulation scheme is analyzed. Simulation results show that the full-rate massive MIMO systems with QOSTBC give a significant performance improvement due to increasing diversity effect, compared with previously considered massive MIMO systems.

A Study on PAR Improvement of OFDM system using SLM-PTS Combine Method and ETD-Turbo Code (SLM-PTS 결합기법 및 ETD-Turbo부호를 적용한 OFDM 시스템에서의 PAR 개선에 관한 연구)

  • Sung Tae-Kyung;Kim Dong-Seek;Cho Hyung-Rae
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.755-761
    • /
    • 2005
  • In this paper, we propose a high-speed adaptive PTS method which eliminates high PAR (Peak-to-Average Power Ratio) and we compare the proposed method with other conventional methods. In addition, we have designed a combined type SLM-PTS scheme to reduce PAR and evaluate the performance. The system used for evaluating PAR performance can be constructed as COFDM (Coded Orthogonal Frequency Division Multiplexing) applying ETD(Enhabced Time Diversity)-Turbo coding scheme. All the analyses in this paper are focused on the system characteristics according to IFFT's point and modulation method and the performance evaluation are based on the PAR reduction rates. As a result, the SLM-PTS combination method reveals good PAR reduction rate and remarkable reduction in the amount of calculations. Especially, in the case of combine-3 scheme, we can achieve approximately $3.7\~3.9$ dB PAR reduction on a basis of 10-5 BER level. Moreover, we can eliminate the side information in COFDM system because of its adaptive characteristics in evaluating PAR reduction rate, so that the additional errors can be omitted.

Design and Implementation of Efficient Symbol Detector for MIMO Spatial Multiplexing Systems (MIMO 공간 다중화 시스템을 위한 효율적인 심볼 검출기의 설계 및 구현)

  • Jung, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.75-82
    • /
    • 2008
  • In this paper, we propose an efficient symbol detection algorithm for multiple-input multiple-output spatial multiplexing (MIMO-SM) systems and present its design and implementation results. By enhancing the performance of the first detected symbol which causes error propagation, the proposed algorithm achieves a considerable performance gain as compared to the conventional sorted QR decomposition (SQRD) based detection and the ordered successive detection (OSD) algorithms. The bit error rate (BER) performance of the proposed detection algorithm is evaluated by the simulation. In case of 16QAM MIMO-SM system with 4 transmit and 4 receive ($4{\times}4$) antennas, at $BER=10^{-3}$ the proposed algorithm obtains the gai improvement of about 2.5-13.5 dB over the conventional algorithms. The proposed detection algorithm was designed in a hardware description language (HDL) and synthesized to gate-level circuits using 0.18um 1.8V CMOS standard cell library. The results show that the proposed algorithm can be implemented without increasing the hardware costs significantly.

Performance Analysis of the Packet DS/SS Receiver using the BSP Methods (패킷 대역 확산 블록 수신기의 성능 분석)

  • 양대웅;강민구;박성경;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.47-55
    • /
    • 1994
  • This paper investigates the performance analysis of the packet DS/SS receiver with a PJED(phase-jump error detector) using the block signal processing(BSP) methods. The conventional packet DS/SS block receiver has a high probability of mistaking the phase-jump detection, which causes the frequency estimation error. The conventional receiver uses a Matched-Pulse Timing Extractor which has a complicated structure. The proposed packet DS/SS block receiver with the PJED which uses libearity of the phase has little probability of mistaking the phase-jump detection. The proposed Matched Pulse Timing Extractor gas the more simple structure but obtains the same performance on the exact matched-pluse timing as the conventional one does. The simulation results show that the proposed receiver gives about 2dB improvement in the BER compared with the conventional receiver.

  • PDF

Propose and Performance Analysis of Turbo Coded New T-DMB System (터보부호화된 새로운 T-DMB 시스템 제안 및 성능 분석)

  • Kim, Hanjong
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.269-275
    • /
    • 2014
  • The DAB system was designed to provide CD quality audio and data services for fixed, portable and mobile applications with the required BER below $10^{-4}$. However for the T-DMB system with the video service of MPEG-4 stream, BER should go down $10^{-8}$ by adding FEC blocks which consist of the Reed-Solomon (RS) encoder/decoder and convolutional interleaver/deinterleaver. In this paper we propose two types of turbo coded T-DMB system without altering the puncturing procedure and puncturing vectors defined in the standard T-DMB system for compatibility. One(Type 1) can replace the existing RS code, convolutional interleaver and RCPC code by a turbo code and the other one (Type 2) can substitute the existing RCPC code by a turbo code. Simulation results show that two new turbo coded systems are able to yield considerable performance gain after just 2 iterations. Type 2 system is better than type 1 but the amount of performance improvement is small.