• Title/Summary/Keyword: BENTHIC DIATOMS

Search Result 76, Processing Time 0.025 seconds

Ecological Network on Benthic Diatom in Estuary Environment by Bayesian Belief Network Modelling (베이지안 모델을 이용한 하구수생태계 부착돌말류의 생태 네트워크)

  • Kim, Keonhee;Park, Chaehong;Kim, Seung-hee;Won, Doo-Hee;Lee, Kyung-Lak;Jeon, Jiyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.60-75
    • /
    • 2022
  • The Bayesian algorithm model is a model algorithm that calculates probabilities based on input data and is mainly used for complex disasters, water quality management, the ecological structure between living things or living-non-living factors. In this study, we analyzed the main factors affected Korean Estuary Trophic Diatom Index (KETDI) change based on the Bayesian network analysis using the diatom community and physicochemical factors in the domestic estuarine aquatic ecosystem. For Bayesian analysis, estuarine diatom habitat data and estuarine aquatic diatom health (2008~2019) data were used. Data were classified into habitat, physical, chemical, and biological factors. Each data was input to the Bayesian network model (GeNIE model) and performed estuary aquatic network analysis along with the nationwide and each coast. From 2008 to 2019, a total of 625 taxa of diatoms were identified, consisting of 2 orders, 5 suborders, 18 families, 141 genera, 595 species, 29 varieties, and 1 species. Nitzschia inconspicua had the highest cumulative cell density, followed by Nitzschia palea, Pseudostaurosira elliptica and Achnanthidium minutissimum. As a result of analyzing the ecological network of diatom health assessment in the estuary ecosystem using the Bayesian network model, the biological factor was the most sensitive factor influencing the health assessment score was. In contrast, the habitat and physicochemical factors had relatively low sensitivity. The most sensitive taxa of diatoms to the assessment of estuarine aquatic health were Nitzschia inconspicua, N. fonticola, Achnanthes convergens, and Pseudostaurosira elliptica. In addition, the ratio of industrial area and cattle shed near the habitat was sensitively linked to the health assessment. The major taxa sensitive to diatom health evaluation differed according to coast. Bayesian network analysis was useful to identify major variables including diatom taxa affecting aquatic health even in complex ecological structures such as estuary ecosystems. In addition, it is possible to identify the restoration target accurately when restoring the consequently damaged estuary aquatic ecosystem.

Seasonal Variations of Microphytobenthos in Sediments of the Estuarine Muddy Sandflat of Gwangyang Bay: HPLC Pigment Analysis (광합성색소 분석을 통한 광양만 갯벌 퇴적물 중 저서미세조류의 계절변화)

  • Lee, Yong-Woo;Choi, Eun-Jung;Kim, Young-Sang;Kang, Chang-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • Seasonal variations of microalgal biomass and community composition in both the sediment and the seawater were investigated by HPLC pigment analysis in an estuarine muddy sandflat of Gwangyang Bay from January to November 2002. Based on the photosynthetic pigments, fucoxanthin, diadinoxanthin, and diatoxanthin were the most dominant pigments all the year round, indicating that diatoms were the predominant algal groups of both the sediment and the seawater in Gwangyang Bay. The other algal pigments except the diatom-marker pigments showed relatively low concentrations. Microphytobenthic chlorophyll ${\alpha}$ concentrations in the upper layer (0.5 cm) of sediments ranged from 3.44 (March at the middle site of the tidal flat) to 169 (July at the upper site) mg $m^{-2}$, with the annual mean concentrations of $68.4{\pm}45.5,\;21.3{\pm}14.3,\;22.9{\pm}15.6mg\;m^{-2}$ at the upper, middle, and lower tidal sites, respectively. Depth-integrated chlorophyll ${\alpha}$ concentrations in the overlying water column ranged from 1.66 (November) to 11.7 (July) mg $m^{-2}$, with an annual mean of $6.96{\pm}3.04mg\;m^{-2}$. Microphytobenthic biomasses were about 3${\sim}$10 times higher than depth-integrated phytoplankton biomass in the overlying water column. The physical characteristics of this shallow estuarine tidal flat, similarity in taxonomic composition of the phytoplankton and microphytobenthos, and similar seasonal patterns in their biomasses suggest that resuspended microphytobenthos are an important component of phytoplankton biomass in Gwangyang Bay. Therefore, considering the importance of microphytobenthos as possible food source for the estuarine benthic and pelagic consumers, a consistent monitoring work on the behavior of microphytobenthos is needed in the tidal flat ecosystems.

Malacological Studies on Parafossarulus manchouricus(Gastropoda: Prosobranchia) in Korea (한국산(韓國産) 왜우렁(Parafossarulus manchouricus)의 패류학적(貝類學的) 연구(硏究))

  • Chung, Pyung-Rim
    • The Korean Journal of Malacology
    • /
    • v.1 no.1
    • /
    • pp.24-50
    • /
    • 1985
  • Five different populations of Parafossarulus manchouricus (Chongpyung, Chinju and Kunsan, Korea; and Japan and Taiwan), a population of Bitbynia (Gabbia) misella (Gongju, Korea) and two different populations of Bithynta tentaculata (Michigan, U.S.A. and Bodensee, Germany) were compared in regard to eff-laying characteristics, morphology, chromosome cytology, natural infections of parasites and ecology of habitats. A satisfactory culture method was devised for laboratory rearing of the snails. Tropical fish food (Terra SML) and powdered green leaves (Ceralife) were used as the main food sources for the snails. Benthic diatoms such as Navicula and Gomphonema from the periphyton were also essential for satisfactory growth, especially for the baby snails. The aquaria were stabilized with small stones from a local stream. Young P. manchouricus snails grew to adult size in about 54 days after hatching. They laid eggs 150-156 days after hatching. The whole cycle (birth to egg-laying) took approximately 5 months. The three species of bithyniid snails are iteroparous and lay eggs once a year. There were no major morphological differences in the shells of genera or subgenera studied here. They did exhibit the following rather minor differences. The shell of Parafossarulus has spirally raised ridges, and its apex is usually eroded; the other two genera lack these characteristics. The shell of B. (Gabbia) misella is small, nor exceeding 7.5 mm in length, while the shells of the other two species are larger, being more than 10 mm in length. Scanning electron microscopy (SEM) of the protoconch of P. manchouricus reveals nearly smooth sculpture with small, low, spiral wrinkles. This sculpture is quite different from that of the Hydrobiidae, a family to which the bithyniids are frequently assigned. Scanning electron microscopy of the radulae of the three bithyniid species showed that their radular morphologies are very similar, but there are some small differences, which may be species-specific. There were some statistical differences in shell heights between the Korean and the other populations of P. manchouricus, and between this species and the other two bithyniids as well. The shell differences between the several populations of Korean P. manchouricus may be related to environment. Edtails of the chromosome cycle of these bithyniid snails are similar to those reported for other snails. No specific differences were observed in the chromosome cycle between the various species and populations of snails employed in this study. Reporred for the first time in molluscs are two darkly stained "nucleolar organizers" during pachyterne stages of meiosis. Two different chromosome numbers were observed in the three bithyniid species: n=17 in B. tentaculata and P. manchouricus, and n=18 in B. (G.) misella. no sex chromosomes or supernumerary chromosomes were seen. There were no morphological differences in karyotypes of three Korean strains of P. manchouricus. The infection rates of cercariae of Clonorchis sinensis in Chinju and Kunsan strains of P. manchouricus were 0.14% and 1.25%, respectively. However, Clonorchis cercariae were found in Chongpyung strain of P. manchouriceu and Gongju strain of B. (G.) misella. The habitats of P. manchouricus around Jinyang Lake were relatively clean without any heavy pollution of aquatic microorganisms and organic materials during the period of this study. The levels of dissolved oxygen (D.O.) and biochemical oxygen demand (B.O.D.) of the water specimens sampled from the study areas ranged from 6.0 to 9.6 ppm and from 0.4 to 1.6 ppm, respectively. Eight metalic constituents from the water samples were also assayed, and all metalic ions detercted were remarkably low below the legal criteria. However, calcium ion in the water samples from the habitats of P. manchouricus was considerably higher than others.

  • PDF

Ecological Characteristics of Periphyton Community in a Small Mountain Stream (Buso) Inflowing Thermal Wastewater Effluent, Korea (온배수가 유입되는 계류 (부소천)에서 부착조류의 생태학적 특성)

  • Jeon, Gyeonghye;Kim, Nan-Young;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.216-237
    • /
    • 2017
  • Thermal effluent of the hot spring has long been a field of interest in the relationship between temperature gradient and freshwater algae in geology, limnology and aquatic ecology throughout the world. On the other hand, many artificial hot springs have been developed in Korea, but the research on them has not been still active. This study was performed every month from December 2015 to September 2016, to elucidate the spatiotemporal effects of thermal wastewater effluent (TWE) on the ecosystem of benthic algal assemblage in four stations(BSU (upstream), HSW (hot spring wastewater outlet), BSD1~2 (downstream)) of the upstream reach of the Buso Stream, a tributary located in the Hantan River basin. During the survey, the influencing distance of temperature on TWE was <1.0 km, and it was the main source of N P nutrients at the same time. The effects of TWE were dominant at low temperature and dry season (December~March), but it was weak at high temperature and wet season (July~September), reflecting some seasonal characteristics. Under these circumstances, the attached algal communities were identified to 59 genera and 143 species. Of these, the major phylum included 21 genera 83 species of diatoms(58.0%), 9 genera 21 species of blue-green algae (14.7%) and 25 genera 32 species of green algae (22.4%), respectively. The spatiotemporal distribution of them was closely related to water temperature ($5^{\circ}C$ and $15^{\circ}C$) and current ($0.2m\;s^{-1}$ and $0.8m\;s^{-1}$). In the basic environment maintaining a high water temperature throughout the year round, the flora favoring high affinity to $PO_4$ in the water body or preferring stream habitat of abundant $NO_3-PO_4$ was dominant. As a result, when compared with the outcomes of previous algal ecology studies conducted in Korea, the Buso Stream was evaluated as a serious polluted state due to persistent excess nutrient supply and high thermal pollution throughout the year round by TWE. It can be regarded as a dynamic ecosystem in which homogeneity (Summer~Autumn) and heterogeneity (Winter~Spring) are repeated between upstream and downstream.

Seasonal Variations of Water Environments and Benthic Diatom Communities in Streams across Byeonsan-Bando and Seonunsan Parklands in Jeollabukdo, Korea (전라북도의 변산반도 국립공원과 선운산 도립공원 하천의 수환경과 부착규조류 군집의 계절적인 변화)

  • Park, Kyung-Woo;Kim, Yun-Sam;Park, Jung-Won;Jeune, Kyung-Hee;Kim, Mi-Kyung
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.239-251
    • /
    • 2011
  • To compare the different water environments in the Jigsaw stream (st. 1, 2) and Jujin stream (st. 3, 4) crossing over the Byeonsan-Bando and Seonunsan parklands, the physico-chemical factors and the species compositions of epilithic diatoms were analyzed from March 2009 to February 2010. The mean values of conductivity (681.1 ${\mu}S\;cm^{-1}$), suspended solids (27.83 mg $L^{-1}$), biological oxygen demand (3.15 mg $L^{-1}$), total nitrogen (3.24 mg $L^{-1}$), total phosphorus (0.24 mg $L^{-1}$) and chlorophyll-${\alpha}$ (12.99 mg $m^{-3}$ ) in Jujin stream were significantly higher than each element in Jigsaw stream. Eighty taxa were classified into 73 species and seven varieties belonging to 24 genera, eight families, three suborders and two orders in Jigsaw stream. Eighty eight taxa were classified into 81 species and seven varieties belonging to 22 genera, seven families, three suborders and two orders in Jujin stream. Biological water quality assessments revealed that Jigsaw stream was ${\beta}$~${\alpha}$-oligosaprobic and Jujin stream was ${\beta}$-mesosaprobic. Dominant and diversity indices were indicated from 0.25~0.81 and from 1.73~4.14 in Jigsaw stream, respectively, and from 0.29~0.64 and from 2.72~4.02 in Jujin stream, respectively. Jujin stream was more eutrophic than those of Jigsaw stream. The different water environments between the two streams could be due to the different ecosystems of the neighboring basins of each stream crossing over in the mountain. Further studies should investigate the water environments of two streams by continuous and regular monitoring to analyze the different ecosystem mechanisms.

Monthly HPLC Measurements of Pigments from an Intertidal Sediment of Geunso Bay Highlighting Variations of Biomass, Community Composition and Photo-physiology of Microphytobenthos (HPLC를 이용한 근소만 조간대 퇴적물내의 저서미세조류 현존량, 군집 및 광생리의 월 변화 분석)

  • KIM, EUN YOUNG;AN, SUNG MIN;CHOI, DONG HAN;LEE, HOWON;NOH, JAE HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • In this study, the surveys were carried out from October (2016) to October (2017) along the tidal flat of Geunso Bay, Taean Peninsula of the western edge of Korea. The sampling trips were carried out for a total of 16 times, once or twice a month. In order to investigate the monthly variation of the microphytobenthos (MPB) biomass, community composition and photo-physiology were analyzed by HPLC (High performance liquid chromatography). The total chlorophyll a (TChl a) concentrations used as an indicator of biomass of MPB in the upper 1 cm sediment layer ranged from 40.4 to $218.9mg\;m^{-2}$ throughout the sampling period. TChl a concentrations showed the maximum level on $24^{th}$ of February and remained high throughout March after which it started to declined. The biomass of MPB showed high values in winter and low values in summer. The monthly variations of Phaeophorbide a concentrations suggested that the low grazing intensity of the predator in the winter may have partly attributed to the MPB winter blooming. As a result of monthly variations of the MPB community composition using the major marker pigments, the concentrations of fucoxanthin, the marker pigment of benthic diatoms, were the highest throughout the year. The concentrations of most of the marker pigments except for chlorophyll b (chlorophytes) and peridinin (dinoflagellates) increased in winter. However, the concentrations of fucoxanthin increased the highest, and the relative ratios of the major marker pigments to TChl a except fucoxanthin decreased during the same period. The vertical distribution of Chl a and oxygen concentrations in the sediments using a fluorometer and an oxygen micro-optode Chl a concentrations decreased with oxygen concentrations with increasing depth of the sediment layers. Moreover, this tendency became more apparent in winter. The Chl a was uniformly vertical down to 12 mm from May to July, but the oxygen concentration distribution in May decreased sharply below 1 mm. The increase in phaeophorbide a concentration observed at this time is likely to be caused by increased oxygen consumption of zoobenthic grazing activities. This could be presumed that MPB cells are transported downward by bioturbation of zoobenthos. The relative ratios (DT/(DD+DT)) obtained with diadinoxanthin (DD) and diatoxanthin (DT), which are often used as indicators of photo-adaptation of MPB, decreased from October to March and increased in May. This indicated that there were monthly differences in activity of Xanthophyll cycle as well.