• Title/Summary/Keyword: BEM method

Search Result 408, Processing Time 0.022 seconds

Development of Integrated HVAC Noise Analysis Program for Ships (선박용 통합 HVAC 소음해석 프로그램 개발)

  • Han, Ju-Bum;Hong, Suk-Yoon;Song, Jee-Hun;Kim, Nho-Seong;Chun, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.588-593
    • /
    • 2011
  • The Main design parameters of ship HVAC systems are pressure drop and noise analysis of ducts. The Noise prediction for HVAC(Heating, Ventilating and Air Conditioning) systems are normally performed by empirical method suggested by NEBB(National Environmental Balancing Bureau, 1994), but NEBB's method is not suitable for the ship HVAC systems. In this paper, numerical analysis methods are used to develop a noise prediction method for the ship HVAC systems, especially for large ducts. To develop regression formula of attenuation of sound pressure level in large duct, Boundary Element Method(BEM) is used. Using dynamic loss coefficient which is suggested by ASHRAE fitting data base and numerical methods of HVAC noise analysis, integrated HVAC noise analysis of Program is developed. The developed program can present pressure drop and noise analysis of the ship HVAC systems. To verify the accuracy and convenience of the developed program, prediction of HVAC system for Semi-Submersible Drilling RIG is carried out and the results are compared with measurement of noise level during sea trial.

  • PDF

Acoustic holography for an engine radiation noise using equivalent sources (등가음원을 이용한 엔진 방사 소음의 음향 홀로그래피에 대한 연구)

  • Jeon, In-Youl;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1101-1106
    • /
    • 2004
  • This study presents the reconstruction of sound field radiated from an automotive engine using equivalent sources. Basic concept of the method presented is to replace the engine noise source with elementary sources of multipoles, e.g., monopoles and dipoles. The so-called Helmholtz equation least-squares (HELS) method can reconstruct the sound radiation fields from spherical geometries in a series expansion of spherical Hankel functions and spherical harmonics. In this paper, multi-Point, multipole equivalent sources are employed to reconstruct the sound field radiated from an automotive engine with a fixed rotation speed. To ensure and improve the accuracy of reconstruction, the spatial filters of multipole coefficients and wave-vectors are adopted for suppressing the adverse effect of high-order multipoles. Optimal filter shapes are designed with regularization parameters minimizing the generalized cross validation (GCV) function between actual and reproduced model. After regeneration of field pressures using the proposed method as many as necessary, the vibro-acoustic field of an engine could be reconstructed by using the BEM-based near-field acoustic holography (NAH) technique in a cost-effective manner.

  • PDF

Prediction of acoustic field induced by a tidal turbine under straight or oblique inflow via a BEM/FW-H approach

  • Seungnam Kim;Spyros A. Kinnas
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.147-172
    • /
    • 2023
  • This study investigates the influence of loading and inflow conditions on tidal turbine performance from a hydrodynamic and hydroacoustic point of view. A boundary element method is utilized for the former to investigate turbine performance at various loading conditions under zero/non-zero yaw inflow. The boundary element method is selected as it has been selected, tested, and validated to be computationally efficient and accurate for marine hydrodynamic problems. Once the hydrodynamic solutions are obtained, such as the time-dependent surface pressures and periodic motion of the turbine blade, they are taken as the known noise sources for the subsequence hydroacoustic analysis based on the Ffowcs Williams-Hawkings formulation given in a form proposed by Farassat. This formulation is coupled with the boundary element method to fully consider the three-dimensional shape of the turbine and the speed of sound in the acoustic analysis. For validations, a model turbine is taken from a reference paper, and the comparison between numerical predictions and experimental data reveals satisfactory agreement in hydrodynamic performance. Importantly, this study shows that the noise patterns and sound pressure levels at both the near- and far-field are affected by different loading conditions and sensitive to the inclination imposed in the incoming flow.

Prediction of Internal Broadband Noise of a Centrifugal Fan Using Stochastic Turbulent Synthetic Model (통계적 난류합성 모델을 이용한 원심홴 내부 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung;Kim, Tae-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1138-1145
    • /
    • 2011
  • The internal broadband noise of a centrifugal fan in a household refrigerator is predicted using hybrid CAA techniques based on stochastic turbulent synthetic model. First, the unsteady flow field around the centrifugal fan is predicted using computational fluid dynamics(CFD) method. Then, the turbulent flow field is synthesized by applying the stochastic turbulent synthetic technique to the predicted flow field. The aerodynamic noise sources of the centrifugal fan are modeled on a basis of the synthesized turbulent field. Finally, the internal broadband noise of the centrifugal fan is predicted using the boundary element method(BEM) and the modeled sources. The predicted noise spectrum is compared with the experimental data. It is found that the predicted result closely follows the experimental data. The proposed method can be used as an effective tool for designing low-noise fans without expensive computational cost required generally for the LES and DNS simulations to resolve the turbulence flow field responsible for the broadband noise.

2-D Magnetostatic Field Analysis Using Adaptive Boundary Element Method (적응 경계요소법을 이용한 2차원 정자장 해석)

  • Koh, Chang-Seop;Jeon, Ki-Eock;Hahn, Song-Yop;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.23-27
    • /
    • 1990
  • Adaptive mesh refinement scheme is incorporated with the Boundary Element Method (BEM) in order to get accurate solution with relatively fewer unknowns for the case of magnetostatic field analysis and A new and simple posteriori local error estimation method is presented. The local error is defined as integration over the element of the difference between solutions acquired us ing second order and first order interpolation function and is used as the criterion for mesh refinement at given grid. Case study for two dimensional problems with singular point reveals that meshes are concentrated on the neighbor of singular point and the error is decreased gradually and the solutions calculated on the domain are converged to the analytic solution as the number of unknowns increases. The adaptive mesh gives much better rate of convergence in global errors than the uniform mesh.

  • PDF

Shape Design Sensitivity Analysis of Supercavitating Flow Problem (초공동(超空洞) 유동 문제의 형상 설계민감도 해석)

  • Choi, Joo-Ho;Kwak, Hyun-Gu;Grandhi, R.V.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1320-1327
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in supercavitating flow problem. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in potential flow problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design in potential flow problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem is chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in this flow problem.

Comparison of Potential and Viscous Codes for Water Entry Problem

  • Kwon, Sun-Hong;Park, Chang-Woo;Shin, Jae-Young
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.32-36
    • /
    • 2012
  • This paper presents a comparison of potential and viscous computational codes for the water entry problem. A po-tential code was developed which adopted the boundary element method to solve the problem. A nonlinear free surface boundary condition was integrated to find new locations of free surface. The dynamic boundary condition was simplified by taking constant potential values for every time steps. The simplified dynamic boundary condition was applied in the new position of the free surface not at the mean level, which is the usual practice for linearized theory. The commercial code FLUENT was used to solve the water entry problem from the viscosity point of view. The movement of the air-liquid interface is traced by distribution of the volume fraction of water in a computational cell. The pressure coefficients were compared with each other, while experimental results published by other researchers were also examined. The characteristics of each method were discussed to clarify merits and limitations when they were applied to the water entry problems.

Analysis of Stress Intensity Factors for an Interface Crack in Anisotropic Dissimilar Materials by Boundary Element Method (경계요소법에 의한 이방성 이종재 접합계면 균열의 응력확대계수 해석)

  • 조상봉;권재도;김태규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.359-370
    • /
    • 1993
  • Up to now, most studies are on interface crack problems in isotropic-isotropic dissimilar materials, but it seems to be not so much on anisotropic dissimlar materials. In this study, the stress intensity factors for an interface crack in anisotropic dissimilar materials are analysed using author's proposed extrapolation method by BEM and we have done a parametric study about material properties or shapes of crack affecting to the stress intensity factors. However, as there are not other's comparable numerical results on these anisotropic dissimilar materials to the best of author's knowledge, the reliability of the present results was proved by following two methods. The first is considering the asymptotic characteristic about stress intensity factors for an interface crack in anisotropic materials when the ansiotropic material approachs to the isotropic material. The second is considering the discontinuity of stress intensity factors between of a crack in an identical homogeneous anisotropic material and an interface crack in anisotropic dissimilar materials.

The Design Technique for Reducing the Intake Noise of Vehicle (Part II) (자동차 흡기소음저감을 위한 설계기법에 관한 연구)

  • Oh, Jae-Eung;Han, Kwang-Hee;Kim, Sang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1656-1665
    • /
    • 1997
  • The intake noise, a major source of vehicle noises, has rapidly become a noticeable, and has been studied to reduce the level. Traditionally, the intake system has been developed through a experiment, namely, the trial and error process. This approach requires very high cost and long time consuming to develop the systm. Recently, FEM and BEM are becoming useful in analysis of the intake system, and the results of analysis are very valid. But because this techniques also require high cost and long analysis time, this technique is generally not practical tool at the early stage of the development. In this study, the software was developed to predict and analyze the acoustic characteristics of the intake system. It was based on the Transfer Matrix Method and operated to analyze a simplified intake system in a personal computer. It can be used early in the design stage of development of the intake system. This study presented a improvement to reduce the level of the intake noise, which modified the specification of the intake system. And the improvement were verified by NIT/SYSNOISE, FE analysis commercial software, and testing a prototype.

The Design Technique for Reducing the Intake Noise of Vehicle (Part I) (자동차 흡기소음저감을 위한 설계기법에 관한 연구)

  • Oh, Jae-Eung;Han, Kwang-Hee;Lee, Kyu-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1648-1655
    • /
    • 1997
  • The intake noise, a major source of vehicle noises, has rapidly become a noticeable, and has been studied to reduce the level. Traditionally, the intake system has been developed through a experiment, namely, the trial and error process. This approach requires very high cost and long time consuming to develop the system. Recently, FEM and BEM are becoming useful in analysis of the intake system, and te results of analysis are very valid. But because these techniques also require high cost and long analysis time, these are generally not practical tool at the early stage of the development of an intake system. In this study, the software was developed to predict and analyze the acoustic characteristics of an intake system. It was based on the Transfer Matrix Method and operated to analyze a simplified intake system in a personal computer. It can be used early in the design stage of development of the intake system. This study presented an improvement to reduce the level of an intake noise. It was to select the optimum position of a resonator and verified by NIT/SYSNOISE, FE analysis commercial software, and testing a prototype.